Ta tính được HK = KC = 3cm
Do BH > HK ⇒ AB > AK (mối quan hệ giữa hình chiếu và đường xiên)
Tam giác AHK vuông tại H nên HK < AK
Vậy HK < AK < AB. Chọn B
Ta tính được HK = KC = 3cm
Do BH > HK ⇒ AB > AK (mối quan hệ giữa hình chiếu và đường xiên)
Tam giác AHK vuông tại H nên HK < AK
Vậy HK < AK < AB. Chọn B
cho tam giác ABC vuông tại A ( AB < AC). Kẻ AH vuông góc với BC tại H. Gọi K là điểm nằm trên HC sao cho HK = HB, D là điểm nằm trên AH sao cho H là trung điểm của AD. Chứng minh:
AK vuông góc với CD
Cho tam giác ABC cân tại A, M là trung điểm của đoạn thẳng BC. Kẻ MH vuông góc với AB (H thuộc AB); MK vuông góc với AC (K thuộc AC). a) Chứng minh góc MAB= góc MAC và AH= AK. b) Chứng minh AM là đường trung trực của đoạn thẳng HK. c) Cho biết AB= 8cm; BC= 6cm. Tính độ dài đoạn thẳng AM. d) Gọi I là giao điểm của AM và HK. Chứng minh IK< MC.
Cho tam giác ABC vuông tại A AB AC . M là điểm thuộc cạnh AC. Kẻ MH vuông góc BC H thuộc BC , biết MH HB. Kẻ HK vuông góc AC K thuộc AC , kẻ HI vuông góc AB I thuộc AB . Chứng minh a HK HI b AH là phân giác của góc BAC.
Cho tam giác ABC có AB=AC, gọi M là trung điểm của BC
a) Chứng minh AM là tia phâ với AB tại H, MKn giác của góc CAB .
b) Từ M kẻ MH vuông góc vơi AB tại H, MK vuông góc với AC tại K. Chứng minh AH=AK.
c) Chứng minh HK// BC.
Cho tam giác ABC vuông tại A (AB < AC). M là điểm thuộc cạnh AC. Kẻ MH vuông góc BC (H thuộc BC), biết MH = HB. Kẻ HK vuông góc AC (K thuộc AC), kẻ HI vuông góc AB (I thuộc AB). Chứng minh:
a) HK = HI;
b) AH là phân giác của góc BAC.
cho tam giác ABC (góc A < 90 độ ; AB<AC) . M là trung điêm của AC . kẻ MH vuông góc với BC < H thuộc BC> . biết MH=HB . kẻ HK vuông góc AC <K thuộc AC>. kẻ HI vuông góc với AB < I thuộc AB > c/m a) HK=HI b) AH là tia phân giác góc BAC
4/Cho tam giác vuông cân ABC tại A , cạnh góc vuông AB = AC= a .Trên tia AB lấy điểm D mà AD= 2a và điểm E mà AE= 3a : CM : Góc B = Góc C + Góc E
5/ Cho Tam giác vuông ABC vuông tại A , kẻ đường cao AH , từ H kẻ HI vuông góc AB và HK vuông góc AC
a/ CM : HI vuông góc HK
b/ CM: IK=AH
c/ Gọi O là giao điểm của AH và IK
CM : OI=OK=OA=OH
d/ Gọi M là trung điểm của cạnh huyền BC
Cm : Am vuông góc KI
Cho tam giác ABC có AB = AC. Gọi H là trung điểm của BC. a) Chứng minh: ABH ACH∆= ∆ và AH BC⊥b) Gọi E là trung điểm của AC, trên tia đối của tia EH lấy điểm K sao cho EK = EH. Chứng minh: AK // BC. c)Chứng minh: HK = AB
Cho tam giác ABC có AB=AC Gọi H là trung điểm của BC a Chứng minh tam giác ABH = tam giác ACH và AB vuông góc vói BC
b gọi E là trung điểm của AC trên tia đối của tia EH . Lấy điểm K Sao cho EK = EH .Chứng minh Ak // BC
c Chứng minh HK = AB
d Gọi I là trung điểm của AH .Chứng minh 3 điểm B I K thẳng hàng
Cho tam giác ABC có AB < AC gọi M là trung điểm của BC kẻ AH vuông góc BC tại H trên tia AM lấy D sao cho DM = MA và trên tia AH lấy K sao cho HK = HA
a) AB = CD
b) AB // CD
c) BC là phân giác của góc ABK