Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
May Mắn Hoàng Tử
Xem chi tiết
do huong giang
Xem chi tiết
Nguyễn Thanh Hằng
15 tháng 1 2018 lúc 11:51

a/ \(\left(x+5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=4\end{matrix}\right.\)

Vậy ........

b/ \(x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

c/ \(\left(x+2\right)\left(x+5\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+2< 0\\x+5< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x+5>0\\x+2>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< -2\\x< -5\end{matrix}\right.\\\left\{{}\begin{matrix}x>-5\\x>-2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x< -5\\x>-2\end{matrix}\right.\)

Vậy ..

Nguyễn Văn Trí
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 10 2023 lúc 15:17

\(x^3-3x+2-2m=0\)

=>\(2m=x^3-3x+2\)

Chúng ta sẽ vẽ đồ thị \(y=x^3-3x+2\)

loading...

Trên đồ thị, chúng ta sẽ thấy khi \(y\in\left(0;4\right)\) thì \(y=x^3-3x+2\) sẽ cho 3 nghiệm phân biệt

=>\(2m\in\left(0;4\right)\)

=>\(m\in\left(0;2\right)\)

=>Chọn B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 6 2018 lúc 12:57

Phương trình m x 2 + (3m − 1)x + 2m − 1 = 0 (m  0) có

a = m; b = 3m – 1; c = 2m – 1

Vì a – b + c = m – 3m + 1 + 2m – 1 = 0 nên phương trình có hai nghiệm

x 1 = − 1 ;   x 2 = 1 − 2 m m

Đáp án: A

Nguyễn Đức Trung
Xem chi tiết
Lê Ng Hải Anh
6 tháng 7 2019 lúc 14:12

\(\frac{m-5}{m+3}>0\)

\(\Rightarrow\hept{\begin{cases}m-5>0\\m+3>0\end{cases}}\) hoặc \(\hept{\begin{cases}m-5< 0\\m+3< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m>5\\m>-3\end{cases}}\) hoặc \(\hept{\begin{cases}m< 5\\m< -3\end{cases}}\)

=> -3 > m > 5 

=.= hk tốt!!

Sooya
6 tháng 7 2019 lúc 14:14

\(\frac{m-5}{m+3}>0\)

th1  : 

\(\hept{\begin{cases}m-5>0\\m+3>0\end{cases}\Rightarrow\hept{\begin{cases}m>5\\m>-3\end{cases}\Rightarrow}m>5}\)

th2 : 

\(\hept{\begin{cases}m-5< 0\\m+3< 0\end{cases}\Rightarrow\hept{\begin{cases}m< 5\\m< -3\end{cases}\Rightarrow}m< 5\left(m\ne-3\right)}\)

Bim Bé
Xem chi tiết
Akai Haruma
28 tháng 7 lúc 22:59

1.

Ta thấy $(x-13)^2\geq 0$ với mọi $x$

$\Rightarrow T=(x-13)^2-26\geq 0-26=-26$

Vậy GTNN của $T$ là $-26$.

Giá trị này đạt tại $x-13=0\Leftrightarrow x=13$

Akai Haruma
28 tháng 7 lúc 22:59

2.

Ta thấy: $(x-14)^2\geq 0$ với mọi $x$

$\Rightarrow M=20-(x-14)^2\leq 20-0=20$

Vậy $M_{\max}=20$. Giá trị này đạt tại $x-14=0$

Hay $x=14$.

Akai Haruma
28 tháng 7 lúc 23:01

3.

Ta thấy: $(20-m-n)^2\geq 0$ với mọi $m,n$

$(m-13)^2\geq 0$ với mọi $m$

$\Rightarrow (20-m-n)^2+(m-13)^2\geq 0$ với mọi $m,n$

Do đó để $(20-m-n)^2+(m-13)^2\leq 0$ thì:

$(20-m-n)^2+(m-13)^2=0$

Điều này xảy ra khi $(20-m-n)^2=(m-13)^2=0$

$\Leftrightarrow m=13; m+n=20\Leftrightarrow m=13; n=7$

你混過 vulnerable 他 難...
Xem chi tiết
Hồng Phúc
5 tháng 1 2021 lúc 17:12

1.

Đặt \(x^2-2x+m=t\), phương trình trở thành \(t^2-2t+m=x\)

Ta có hệ \(\left\{{}\begin{matrix}x^2-2x+m=t\\t^2-2t+m=x\end{matrix}\right.\)

\(\Rightarrow\left(x-t\right)\left(x+t-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=t\\x=1-t\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=x^2-2x+m\\x=1-x^2+2x-m\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-x^2+3x\\m=-x^2+x+1\end{matrix}\right.\)

Phương trình hoành độ giao điểm của \(y=-x^2+x+1\) và \(y=-x^2+3x\):

\(-x^2+x+1=-x^2+3x\)

\(\Leftrightarrow x=\dfrac{1}{2}\Rightarrow y=\dfrac{5}{4}\)

Đồ thị hàm số \(y=-x^2+3x\) và \(y=-x^2+x+1\)

Dựa vào đồ thị, yêu cầu bài toán thỏa mãn khi \(m< \dfrac{5}{4}\)

Mà \(m\in\left[-10;10\right]\Rightarrow m\in[-10;\dfrac{5}{4})\)

Lê My
Xem chi tiết
Jiyoen Phạm
Xem chi tiết
Hoàng Thị Ngọc Anh
29 tháng 6 2017 lúc 8:07

a) Ta có: \(f\left(0\right)=5\Rightarrow a.0^2+b.0+c=5\)

\(\Rightarrow c=5\)

\(f\left(1\right)=0\Rightarrow a.1^2+b.1+c=0\)

\(\Rightarrow a+b+c=0\left(1\right)\)

Thay \(c=5\) vào (1) được:

\(a+b+5=0\Rightarrow a+b=-5\left(2\right)\)

\(f\left(5\right)=0\Rightarrow a.5^2+5b+c=0\)

\(\Rightarrow25a+5b+c=0\)

\(\Rightarrow5\left(5a+b+1\right)=0\)

\(\Rightarrow5a+b+1=0\)

\(\Rightarrow5a+b=-1\)

\(\Rightarrow b=-1-5a\left(3\right)\)

Thay \(\left(3\right)\rightarrow\left(2\right):a+\left(-1-5a\right)=-5\)

\(\Rightarrow a-1-5a=-5\)

\(\Rightarrow-1-4a=-5\)

\(\Rightarrow4a=4\)

\(\Rightarrow a=1\)

Khi đó: \(1+b=-5\Rightarrow b=-6\)

Vậy \(\left\{{}\begin{matrix}a=1\\b=-6\\c=5\end{matrix}\right.\).

b) Kết hợp \(y=-3\) với câu a) ta có:

\(x^2-6x+5=-3\)

\(\Rightarrow x^2-3x-3x+5=-3\)

\(\Rightarrow x^2-3x-3x+ 9-4=-3\)

\(\Rightarrow x\left(x-3\right)-3\left(x-3\right)-4=-3\)

\(\Rightarrow\left(x-3\right)^2=1\)

\(\Rightarrow\left[{}\begin{matrix}x-3=1\\x-3=-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\).

Mysterious Person
29 tháng 6 2017 lúc 8:09

a) thay f(0) = 5 vào hàm số ta có : \(5=a0^2+b0+c\) \(\Leftrightarrow\) \(c=5\)

thay f(1) = 0 và f(5) = 0 vào hàm số ta có hệ phương trình

\(\left\{{}\begin{matrix}a+b+5=0\\25a+5b+5=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}a+b=-5\\25a+5b=-5\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}5a+5b=-25\\25a+5b=-5\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}20a=20\\a+b=-5\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=1\\1+b=-5\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=1\\b=-6\end{matrix}\right.\)

vậy \(a=1;b=-6;c=5\)

Mysterious Person
29 tháng 6 2017 lúc 8:11

câu b thay a;b;c vào tìm x là được

hancnnxj
Xem chi tiết