Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 3 2019 lúc 6:25

Đáp án C.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 1 2017 lúc 9:51

Chọn D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 1 2017 lúc 11:13

Đáp án D

bùi thu linh
Xem chi tiết

Bài 1: Cho hàm số Y= f(x)=k.x    ( k là hằng số , k khác 0). Chứng minh rằng:

Giải thích các bước:

 a)f(10x) = 10f(x)

ta có:

y= f (x) =kx

=>f(10x) = k(10x) =10kx (*)

=>10f(x) = 10kx (**)

Từ  (*) và (**) 

=> f(10x) =10f(x)

=>đpcm

b)

f(x1 - x2) = k.(x1 - x2) (1)

f(x1) - f(x2) = k.x1 - k.x2 = k.(x1 - x2) (2)

Từ (1) và (2) => đpcm

Giải thích các bước:

 a)f(10x) = 10f(x)

ta có:

y= f (x) =kx

=>f(10x) = k(10x) =10kx (*)

=>10f(x) = 10kx (**)

Từ  (*) và (**) 

=> f(10x) =10f(x)

=>đpcm

b)

f(x1 - x2) = k.(x1 - x2) (1)

f(x1) - f(x2) = k.x1 - k.x2 = k.(x1 - x2) (2)

Từ (1) và (2) => đpcm

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 7 2018 lúc 4:23

Dựa vào đồ thị ta thấy phương trình chỉ có một nghiệm đơn và hai nghiệm kép nên chỉ đổi dấu khi qua nghiệm đơn này.

Do đó suy ra hàm số f(x)  có đúng một cực trị.

 Chọn A.

lê phạm lan phương
Xem chi tiết
Ham Eunjung
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 7 2018 lúc 2:34

Dựa vào đồ thị ta thấy phương trình có ba nghiệm đơn và đổi dấu khi qua nghiệm đơn này.

 Do đó suy ra hàm số có ba điểm cực trị.

 Chọn C.

toi la toi toi la toi
Xem chi tiết
Nguyễn Quang Kiên
11 tháng 1 2017 lúc 20:29

hoi lam the

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 8 2019 lúc 15:16

Vì Giải sách bài tập Toán 11 | Giải sbt Toán 11 

nên với dãy số ( x n ) bất kì, x n ∈ K \   x 0 và x n   →   x 0  ta luôn có 

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ định nghĩa suy ra f ( x n ) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.

Nếu số dương này là 1 thì f ( x n   )   >   1 kể từ một số hạng nàođó trởđi.

Nói cách khác, luôn tồn tạiít nhất một số x k ∈ K \   x 0 sao cho f ( x k )   >   1 .