Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, A B C ^ = 60 ° . Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính diện tích của mặt cầu ngoại tiếp hình chóp S.ABCD.
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, A B C ^ = 60 ∘ .Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Tính diện tích S m c của mặt cầu ngoại tiếp hình chóp S.ABC.
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, ABC = 60 0 . Hai mặt bên (SAD) và (SAB) cùng vuông góc với đáy (ABCD) . Cạnh SB=a 2 . Mệnh đề nào dưới đây sai?
A. S A B C D = a 2 3 2
B. SC=a 2
C. (SAC ) ⊥ (SBD).
D. V S . A B C D = 5 3 a 3 12
Cho hình chóp S.ACBD có đáy là hình vuông cạnh a mặt bên SAB nằm trong mặt phẳng vuông góc với (ABCD), S A B ^ = 60°, SA = 2a Tính thể tích V của khối chóp S.ABCD
A. V = a 3 3 3
B. V = a 3 3
C. V = 2 a 3 3 3
D. V = a 3
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, A B C ^ = 60 0 . Hai mặt bên (SAD) và (SAB) cùng vuông góc với đáy (ABCD) . Cạnh S B = a 2 . Mệnh đề nào dưới đây sai?
A. S A B C D = a 2 3 2
B. S C = a 2
C. S A C ⊥ S B D
D. V S . A B C D = a 3 3 12
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a , A B C ^ = 60 0 . Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Tính diện tích S m c của mặt cầu ngoại tiếp hình chóp S.ABC.
A. S m c = 13 π a 2 12
B. S m c = 5 π a 2 3
C. S m c = 13 π a 2 36
D. S m c = 5 π a 2 9
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a , hai mặt bên (SAB) và (SAD ) cùng vuông góc vs đáy . Góc giữa cạnh bên SC và mặt bên (SAB ) bằng 45° .tính thể tích khối chóp S.ABCD theo a
Lời giải:
Vì $(SAB), (SAD)$ cùng vuông góc với $(ABCD)$ mà $(SAB)\cap (SAD)\equiv SA$ nên $SA\perp (ABCD)$
Vì $SA\perp (ABCD)$ nên $SA\perp CB$
Mà: $AB\perp CB$
$\Rightarrow CB\perp (SAB)$
$\Rightarrow \angle (SC,(ABCD))=\angle (SC, SB)=\angle CSB=45^0$
$\Rightarrow SB=CB=a$
$SA=\sqrt{SB^2-AB^2}=\sqrt{a^2-a^2}=0$ (vô lý)
Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, A B C ^ = 60 ° , mặt bên SAB là tam giác đều nằm trong mặt phẳng vuông góc với đáy. Khoảng cách từ điểm A đến mặt phẳng (SCD) bằng
A. a 6 4
B. a
C. a 3 2
D. a 21 7
Cho hình chóp S.ABCD có ABCD là hình thoi cạnh a và S A B ^ = S A D ^ = B A D ^ = 60 ° cạnh bên SA=a. Thể tích khối chóp tính theo a là:
A. a 3 2 2
B. a 3 2 3
C. a 3 2 6
D. a 3 2 12
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, A B C ^ = 60 ° . Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Gọi M và N lần lượt là trung điểm của các cạnh AB, CD. Khoảng cách giữa hai đường thẳng CM và SN bằng
A. a 3 4
B. 3 a 2 2
C. a 3 2
D. 3 a 2