Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
pikchu 5a

Những câu hỏi liên quan
Chu Phan Diệu Thảo
Xem chi tiết
Lai Tri Dung
14 tháng 11 2015 lúc 21:20

Bạn ơi mình giải nhé:

(2n;2n+2)

2n là số chẵn =>2n chia hết cho 2

2n+2 là số chẵn =>2n+2 chia hết cho 2

Vậy ƯCLN(2n;2n+2)=2

 

 

(2n+1;2n+3)

2n+1 là số lẻ.=>2n+1 chia hết cho 1

2n+3 là số lẻ=>2n+3 chia hết cho 1

[Vì 2n+1 và 2n+3 không thể chia hết cho cùng 1 số ngoại trừ 1 nên là ƯCLN(2n+1;2n+3)=1]

Vậy ƯCLN(2n+1;2n+3)=1

Thành Tất
Xem chi tiết
Nguyễn Hoàng Minh
30 tháng 10 2021 lúc 20:55

\(1,\\ a,Gọi.ƯCLN\left(n,n+1\right)=d\\ \Rightarrow n⋮d;n+1⋮d\\ \Rightarrow n+1-n⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)

Vậy \(ƯCLN\left(n,n+1\right)=1\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 2 2017 lúc 2:36

a, Gọi d là ƯCLN(2n+2;2n)

=> 2 n + 2 ⋮ d 2 n ⋮ d ⇒ 2 n + 2 - 2 n = 2 ⋮ d

Mà d là ƯCLN nên d là số lớn nhất và cũng là ước của 2.

Vậy d = 2

b, Gọi ƯCLN(3n+2 ;2n+1) = d

Ta có:  3 n + 2 ⋮ d 2 n + 1 ⋮ d ⇒ 2 3 n + 2 ⋮ d 3 2 n + 1 ⋮ d

=>[2(3n+2) – 3(2n+1)] = 1 ⋮ d

Vậy d = 1

Trịnh Phương Chi
Xem chi tiết
Vanlacongchua
17 tháng 8 2016 lúc 19:10

1) Tìm ưcln(2n + 1  ,  2n + 3)

Ta có: gọi ƯCLN(2n+1  ,  2n+3) là d

=> 2n+1chia hết d ;  2n+3 chia hết d

=>(2n+3-2n+1) chia hết  d

=> 2n+3 - 2n -1  chia hết d

=>2 chia hết cho d

=>ƯC(2n+1 ; 2n+3 ) = Ư(2)= {1;2}

vì 2n+3 và 2n+1 không chia hết cho d nên d=1

vậy ƯCLN(2n+1;2n+3)=1

2)Tìm ưcln(2n + 5,3n + 7)

gọi ƯCLN(2n+5 ; 3n+7) là d

=> 2n+5 chia hết cho d ; 3n+ 7 chia hết cho d

=>6n+15 chia hết cho d ; 6n+14 chia hết cho d

=>(6n+15-6n-14) chia hết cho d

=> 6n+15-6n-14 chia hết cho d

=> 1 chia hết cho d => d=1

vậy ƯCLN(2n+5;3n+7)= 1

Trịnh Phương Chi
18 tháng 8 2016 lúc 19:13

Thanks bn nhiều.

Hữu Trương Văn
Xem chi tiết
Lê Song Phương
5 tháng 1 lúc 21:14

Đặt \(\left(2n+1;2n+3\right)=d\) (d lẻ)

Khi đó \(\left\{{}\begin{matrix}2n+1⋮d\\2n+3⋮d\end{matrix}\right.\)

\(\Rightarrow\left(2n+3\right)-\left(2n+1\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Do d lẻ \(\Rightarrow d=1\)

\(\Rightarrow\) đpcm

✎﹏ 2k12 ✔ᴾᴿᴼシ
5 tháng 1 lúc 21:15

goij ucln (2n+1;2n+3)=d
=> 2n+1: hết d 
     2n+3: hết d
=> 2n+3-2n+1: hết d
      2: hết d => de{1;2}
lập luận d là số lẻ
=> d=1
VẬY...

nấm nấm
Xem chi tiết
nguyễn lê gia linh
Xem chi tiết
Đàm Công Tuấn
20 tháng 11 2017 lúc 20:31

A, 

Từ đề bài ta có

\(2n+3;2n+2⋮d\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

suy ra d=1 suy ra đpcm

B nhân 3 vào số đầu tiên

nhâm 2 vào số thứ 2

rồi trừ đi được đpcm

C,

Nhân 2 vào số đầu tiên rồi trừ đi được đpcm

What Coast
Xem chi tiết
Trương Tuấn Anh
27 tháng 1 2016 lúc 18:25

 

Gọi d la ƯCLN(2n+1,2n^2-1)ta có

2n+1 và 2n^2-1chia het cho d

2n^2+n-2n^2+1chia het cho d

n+1chia hết cho d

2(n+1)-2n+1chia het cho d

1chia hết cho d=>d€Ư(1)=1

Vậy ƯCLN(2n+1,2n^2-1)=1

Thêm dấu suy ra bạn nhé!

trang chelsea
27 tháng 1 2016 lúc 18:11

ban nhan dung se ra dap an

chào 1 ngày mới
27 tháng 1 2016 lúc 18:12

khó thế

nguyen Thuy
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 11 2021 lúc 21:05

\(a,76=2^2\cdot19\\ 1995=3\cdot5\cdot7\cdot19\\ \RightarrowƯCLN\left(76,1995\right)=19\)

\(b,\) Gọi \(d=ƯCLN\left(2n+1,3n+1\right)\)

\(\Rightarrow2n+1⋮d;3n+1⋮d\\ \Rightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)

Vậy \(ƯCLN\left(2n+1,3n+1\right)=1\)

Nguyễn Lê Phước Thịnh
9 tháng 11 2021 lúc 21:05

a: UCLN(76;1995)=19

Nguyễn Hà Trang
Xem chi tiết
Trí Ngô Nguyễn Minh
22 tháng 9 2016 lúc 13:03

a) Giả sử ƯCLN(n,n+1)=d (d\(\in\)N*)

Nên   n chia hết cho d             \(\Rightarrow\)n+1-n=1\(\Rightarrow\)1 chia hết cho d\(\Rightarrow\)d=1

         n+1 chia hết cho d        

Vậy ƯCLN(n,n+1)=1

Trí Ngô Nguyễn Minh
22 tháng 9 2016 lúc 13:10

b) Giả sử ƯCLN(n,2n+1)=d (d\(\in\)N*)

Nên    n chia hết cho d                 

          2n+1 chia hết cho d

Nên    2n chia hết cho d           \(\Rightarrow\)2n+1-2n=1\(\Rightarrow\)1 chia hết cho d\(\Rightarrow\)d=1

          2n+1 chia hết cho d 

Vậy ƯCLN(n,2n+1)=1

Trí Ngô Nguyễn Minh
22 tháng 9 2016 lúc 13:19

c) Giả sử ƯCLN(3n+1,4n+1)=d (d\(\in\)N*)

Nên   3n+1 chia hết cho d

         4n+1 chia hết cho d

Nên   4(3n+1) chia hết cho d        

         3(4n+1) chia hết cho d

Nên   12n+4 chia hết cho d      \(\Rightarrow\)12n+4-(12n+3)=1\(\Rightarrow\)1 chia hết cho d\(\Rightarrow\)d=1

         12n+3 chia hết cho d  

Vậy ƯCLN(3n+1,4n+1)=1