Giải phương trình: 10 x + 3 12 = 1 + 6 + 8 x 9
Giải phương trình sau :
((x-2)(x+10)/3) - ((x+4)(x+10)/12) = ((x-2)(x+4)/4)
giải phương trình
1)\(\sqrt{x+4}-\sqrt{1-x}=1\)
2)\(\left(x+3\right)\sqrt{10-x^2}=x^2-x-12\)
1/\(\sqrt{x-4}-\sqrt{1-x}=1\)
Để Pt dc xác định
Thì\(\left\{{}\begin{matrix}x-4\ge0\\1-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x\le1\end{matrix}\right.\)
Vì xét trên trục số ta thấy nó loại nhau
Nên Pt này vô nghiệm
1)ĐKXĐ: \(-4\le x\le1\)
\(\sqrt{x+4}-\sqrt{1-x}=1\\ \Rightarrow\sqrt{x+4}=\sqrt{1-x}+1\\ \Rightarrow x+4=1-x+2\sqrt{1-x}+1\\ \Rightarrow2x+2=2\sqrt{1-x}\\ \Rightarrow x+1=\sqrt{1-x}\\ \Rightarrow x^2+2x+1=1-x\\ \Rightarrow x^2+3x=0\\ \Rightarrow x\left(x+3\right)=0\\ \Rightarrow x=-3\)
Vậy x = -3
2)ĐKXĐ: \(-\sqrt{10}\le x\le\sqrt{10}\)
Với x = -3 thì:
0=0(luôn đúng)
Với x khác -3 thì:
\(\left(x+3\right)\sqrt{10-x^2}=x^2-x+12\\ \Rightarrow\left(x+3\right)\sqrt{10-x^2}=\left(x+3\right)\left(x-4\right)\\ \Rightarrow\sqrt{10-x^2}=x-4\\ \Rightarrow10-x^2=x^2-8x+16\\ \Rightarrow2x^2-8x+6=0\\ \Rightarrow x^2-4x+3=0\\ \Rightarrow\left(x-1\right)\left(x-3\right)=0\\ \Rightarrow x\in\left\{1;3\right\}\)
Vậy x\(\in\left\{-3;1;3\right\}\)
Giải phương trình sau: \({(x+10)(x+4)\over 12}-{(x+4)(2-x)\over 4}={(x+10)(x-2)\over 3}\)
giải phương trình 1/x+1/x+10=1/12
giải phương trình 1/x+1/(x+10)=1/12
giải phương trình 4(x+5)(x+6)(x+10)(x+12)=3x^2
Xét x=0 ==> loại
Xét x\(\ne\)0,ta chia cả 2 vế cho x2 thu được:
4(x2+17x+60)(x2+16x+60)=3x2
4(x+\(\frac{60}{x}\)+17)(x+\(\frac{60}{x}\)+16)=3
Đặt x+\(\frac{60}{x}\)+16=t,ta được
4(t+1).t=3 <=> 4t2+4t-3=0 <=> t=\(\frac{1}{2}\)hoặc t=\(\frac{-3}{2}\)
Với t=1/2,ta có x+\(\frac{60}{x}\)+16=1/2 <=> x=-15/2 hoặc x=-8
Với t=-3/2,ta có x+\(\frac{60}{x}\)+16=-3/2 <=> ... bạn tự giải nốt nhé.
giải phương trình
x^4-9*x^2-2*x+15=0
4*(x+5)*(x+6)*(x+10)*(x+12)=3*x^2
hãy giải phương trình
(x+9)(x+10)(x+11)(x+12)=170
Ta có : \(\left(x+9\right)\left(x+10\right)\left(x+11\right)\left(x+12\right)=170\)
\(\Leftrightarrow\left[\left(x+9\right)\left(x+12\right)\right]\left[\left(x+10\right)\left(x+11\right)\right]=170\)
\(\Leftrightarrow\left(x^2+21x+108\right)\left(x^2+21x+110\right)=170\)
Đặt \(x^2+21x+109=a\).Khi đó , PT tương đương với :
\(\left(a-1\right)\left(a+1\right)=170\)
\(\Leftrightarrow a^2-1=170\)
\(\Leftrightarrow a^2=171\)
Chỗ này thì tớ nghĩ đề sai , 170 phải là 168
\(\left(x+9\right)\left(x+10\right)\left(x+11\right)\left(x+12\right)=170\)
\(\Leftrightarrow\left(x+9\right)\left(x+12\right)\left(x+10\right)\left(x+11\right)=170\)
\(\Leftrightarrow\left(x^2+21x+108\right)\left(x^2+21x+110\right)=170\)
Đặt \(x^2+21x+108=t\)
\(\Leftrightarrow t\left(t+2\right)=170\Leftrightarrow t^2+2t-170=0\)
\(\Leftrightarrow t=1\pm3\sqrt{19}\)đề sai ?
Giải các phương trình sau:
a) \(\sqrt {{x^2} + 3x + 1} = 3\)
b) \(\sqrt {{x^2} - x - 4} = x + 2\)
c) \(2 + \sqrt {12 - 2x} = x\)
d) \(\sqrt {2{x^2} - 3x - 10} = - 5\)
a) \(\sqrt {{x^2} + 3x + 1} = 3\)
\(\begin{array}{l} \Rightarrow {x^2} + 3x + 1 = 9\\ \Rightarrow {x^2} + 3x - 8 = 0\end{array}\)
\( \Rightarrow x = \frac{{ - 3 - \sqrt {41} }}{2}\) và \(x = \frac{{ - 3 + \sqrt {41} }}{2}\)
Thay hai nghiệm trên vào phương trình \(\sqrt {{x^2} + 3x + 1} = 3\) ta thấy cả hai nghiệm đều thỏa mãn phương trình
Vậy nghiệm của phương trình đã cho là \(x = \frac{{ - 3 - \sqrt {41} }}{2}\) và \(x = \frac{{ - 3 + \sqrt {41} }}{2}\)
b) \(\sqrt {{x^2} - x - 4} = x + 2\)
\(\begin{array}{l} \Rightarrow {x^2} - x - 4 = {\left( {x + 2} \right)^2}\\ \Rightarrow {x^2} - x - 4 = {x^2} + 4x + 4\\ \Rightarrow 5x = - 8\\ \Rightarrow x = - \frac{8}{5}\end{array}\)
Thay \(x = - \frac{8}{5}\) và phương trình \(\sqrt {{x^2} - x - 4} = x + 2\) ta thấy thỏa mãn phương trình
Vậy nghiệm của phương trình đã cho là \(x = - \frac{8}{5}\)
c) \(2 + \sqrt {12 - 2x} = x\)
\(\begin{array}{l} \Rightarrow \sqrt {12 - 2x} = x - 2\\ \Rightarrow 12 - 2x = {\left( {x - 2} \right)^2}\\ \Rightarrow 12 - 2x = {x^2} - 4x + 4\\ \Rightarrow {x^2} - 2x - 8 = 0\end{array}\)
\( \Rightarrow x = - 2\) và \(x = 4\)
Thay hai nghiệm vừa tìm được vào phương trình \(2 + \sqrt {12 - 2x} = x\) thì thấy chỉ có \(x = 4\) thỏa mãn
Vậy \(x = 4\) là nghiệm của phương trình đã cho.
d) Ta có biểu thức căn bậc hai luôn không âm nên \(\sqrt {2{x^2} - 3x - 10} \ge 0\forall x \in \mathbb{R}\)
\( \Rightarrow \sqrt {2{x^2} - 3x - 10} = - 5\) (vô lí)
Vậy phương trình đã cho vô nghiệm
Giải phương trình sau: (x-90/10)+(x-76/12)+(x-58/14)+(x-36/16)+(x-15/17)=15
\(\dfrac{x-90}{10}+\dfrac{x-76}{12}+\dfrac{x-58}{14}+\dfrac{x-36}{16}+\dfrac{x-15}{17}=15\)
\(\Leftrightarrow\dfrac{x-90}{10}-1+\dfrac{x-76}{12}-2+\dfrac{x-58}{14}-3+\dfrac{x-36}{16}-4+\dfrac{x-15}{17}-5=0\)
\(\Leftrightarrow\dfrac{x-100}{10}+\dfrac{x-100}{12}+\dfrac{x-100}{14}+\dfrac{x-100}{16}+\dfrac{x-100}{17}=0\)
\(\Leftrightarrow\left(x-100\right)\left(\dfrac{1}{10}+\dfrac{1}{12}+\dfrac{1}{14}+\dfrac{1}{16}+\dfrac{1}{17}\right)=0\)
\(\Leftrightarrow x-100=0\) (do \(\dfrac{1}{10}+\dfrac{1}{12}+\dfrac{1}{14}+\dfrac{1}{16}+\dfrac{1}{17}\ne0\))
\(\Leftrightarrow x=100\)