Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kiên Trần
Xem chi tiết
ngọc linh
Xem chi tiết
trương khoa
19 tháng 8 2021 lúc 9:51

1/\(\sqrt{x-4}-\sqrt{1-x}=1\)

Để Pt dc xác định

Thì\(\left\{{}\begin{matrix}x-4\ge0\\1-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x\le1\end{matrix}\right.\)

Vì xét trên trục số ta thấy nó loại nhau

Nên Pt này vô nghiệm

 

 

 

Nguyen Minh Hieu
19 tháng 8 2021 lúc 9:54

1)ĐKXĐ: \(-4\le x\le1\)

\(\sqrt{x+4}-\sqrt{1-x}=1\\ \Rightarrow\sqrt{x+4}=\sqrt{1-x}+1\\ \Rightarrow x+4=1-x+2\sqrt{1-x}+1\\ \Rightarrow2x+2=2\sqrt{1-x}\\ \Rightarrow x+1=\sqrt{1-x}\\ \Rightarrow x^2+2x+1=1-x\\ \Rightarrow x^2+3x=0\\ \Rightarrow x\left(x+3\right)=0\\ \Rightarrow x=-3\)

Vậy x = -3

2)ĐKXĐ: \(-\sqrt{10}\le x\le\sqrt{10}\)

Với x = -3 thì:

0=0(luôn đúng)

Với x khác -3 thì:

\(\left(x+3\right)\sqrt{10-x^2}=x^2-x+12\\ \Rightarrow\left(x+3\right)\sqrt{10-x^2}=\left(x+3\right)\left(x-4\right)\\ \Rightarrow\sqrt{10-x^2}=x-4\\ \Rightarrow10-x^2=x^2-8x+16\\ \Rightarrow2x^2-8x+6=0\\ \Rightarrow x^2-4x+3=0\\ \Rightarrow\left(x-1\right)\left(x-3\right)=0\\ \Rightarrow x\in\left\{1;3\right\}\)

Vậy x\(\in\left\{-3;1;3\right\}\)

quynhanh
Xem chi tiết
Nguyễn Phương Vy
24 tháng 3 2020 lúc 11:32

không có bài

Khách vãng lai đã xóa
Nguyễn minh phương
Xem chi tiết
Hà nguyễn
Xem chi tiết
hung adg
Xem chi tiết
SV
26 tháng 10 2014 lúc 9:19

Xét x=0 ==> loại

Xét x\(\ne\)0,ta chia cả 2 vế cho x2 thu được: 

4(x2+17x+60)(x2+16x+60)=3x2

4(x+\(\frac{60}{x}\)+17)(x+\(\frac{60}{x}\)+16)=3

Đặt x+\(\frac{60}{x}\)+16=t,ta được

4(t+1).t=3 <=> 4t2+4t-3=0 <=> t=\(\frac{1}{2}\)hoặc t=\(\frac{-3}{2}\)

Với t=1/2,ta có x+\(\frac{60}{x}\)+16=1/2 <=> x=-15/2 hoặc x=-8

Với t=-3/2,ta có x+\(\frac{60}{x}\)+16=-3/2 <=> ... bạn tự giải nốt nhé.

nguyen thi loan
Xem chi tiết
Trần Dương Dũng
Xem chi tiết

Ta có : \(\left(x+9\right)\left(x+10\right)\left(x+11\right)\left(x+12\right)=170\)

\(\Leftrightarrow\left[\left(x+9\right)\left(x+12\right)\right]\left[\left(x+10\right)\left(x+11\right)\right]=170\)

\(\Leftrightarrow\left(x^2+21x+108\right)\left(x^2+21x+110\right)=170\)

Đặt \(x^2+21x+109=a\).Khi đó , PT tương đương với :

\(\left(a-1\right)\left(a+1\right)=170\)

\(\Leftrightarrow a^2-1=170\)

\(\Leftrightarrow a^2=171\)

Chỗ này thì tớ nghĩ đề sai , 170 phải là 168

Khách vãng lai đã xóa
Nguyễn Huy Tú
15 tháng 2 2021 lúc 19:14

\(\left(x+9\right)\left(x+10\right)\left(x+11\right)\left(x+12\right)=170\)

\(\Leftrightarrow\left(x+9\right)\left(x+12\right)\left(x+10\right)\left(x+11\right)=170\)

\(\Leftrightarrow\left(x^2+21x+108\right)\left(x^2+21x+110\right)=170\)

Đặt \(x^2+21x+108=t\)

\(\Leftrightarrow t\left(t+2\right)=170\Leftrightarrow t^2+2t-170=0\)

\(\Leftrightarrow t=1\pm3\sqrt{19}\)đề sai ? 

Khách vãng lai đã xóa
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
26 tháng 9 2023 lúc 23:23

a) \(\sqrt {{x^2} + 3x + 1}  = 3\)

\(\begin{array}{l} \Rightarrow {x^2} + 3x + 1 = 9\\ \Rightarrow {x^2} + 3x - 8 = 0\end{array}\)

\( \Rightarrow x = \frac{{ - 3 - \sqrt {41} }}{2}\) và \(x = \frac{{ - 3 + \sqrt {41} }}{2}\)

Thay hai nghiệm trên vào phương trình \(\sqrt {{x^2} + 3x + 1}  = 3\) ta thấy cả hai nghiệm đều thỏa mãn phương trình

Vậy nghiệm của phương trình đã cho là \(x = \frac{{ - 3 - \sqrt {41} }}{2}\) và \(x = \frac{{ - 3 + \sqrt {41} }}{2}\)

b) \(\sqrt {{x^2} - x - 4}  = x + 2\)

\(\begin{array}{l} \Rightarrow {x^2} - x - 4 = {\left( {x + 2} \right)^2}\\ \Rightarrow {x^2} - x - 4 = {x^2} + 4x + 4\\ \Rightarrow 5x =  - 8\\ \Rightarrow x =  - \frac{8}{5}\end{array}\)

Thay \(x =  - \frac{8}{5}\) và phương trình \(\sqrt {{x^2} - x - 4}  = x + 2\) ta thấy thỏa mãn phương trình

Vậy nghiệm của phương trình đã cho là \(x =  - \frac{8}{5}\)

c) \(2 + \sqrt {12 - 2x}  = x\)

\(\begin{array}{l} \Rightarrow \sqrt {12 - 2x}  = x - 2\\ \Rightarrow 12 - 2x = {\left( {x - 2} \right)^2}\\ \Rightarrow 12 - 2x = {x^2} - 4x + 4\\ \Rightarrow {x^2} - 2x - 8 = 0\end{array}\)

\( \Rightarrow x =  - 2\) và \(x = 4\)

Thay hai nghiệm vừa tìm được vào phương trình \(2 + \sqrt {12 - 2x}  = x\) thì thấy chỉ có \(x = 4\) thỏa mãn

Vậy \(x = 4\) là nghiệm của phương trình đã cho.

d) Ta có biểu thức căn bậc hai luôn không âm nên \(\sqrt {2{x^2} - 3x - 10}  \ge 0\forall x \in \mathbb{R}\)

\( \Rightarrow \sqrt {2{x^2} - 3x - 10}  =  - 5\) (vô lí)

Vậy phương trình đã cho vô nghiệm

Tố Quyên
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 1 lúc 18:02

\(\dfrac{x-90}{10}+\dfrac{x-76}{12}+\dfrac{x-58}{14}+\dfrac{x-36}{16}+\dfrac{x-15}{17}=15\)

\(\Leftrightarrow\dfrac{x-90}{10}-1+\dfrac{x-76}{12}-2+\dfrac{x-58}{14}-3+\dfrac{x-36}{16}-4+\dfrac{x-15}{17}-5=0\)

\(\Leftrightarrow\dfrac{x-100}{10}+\dfrac{x-100}{12}+\dfrac{x-100}{14}+\dfrac{x-100}{16}+\dfrac{x-100}{17}=0\)

\(\Leftrightarrow\left(x-100\right)\left(\dfrac{1}{10}+\dfrac{1}{12}+\dfrac{1}{14}+\dfrac{1}{16}+\dfrac{1}{17}\right)=0\)

\(\Leftrightarrow x-100=0\) (do \(\dfrac{1}{10}+\dfrac{1}{12}+\dfrac{1}{14}+\dfrac{1}{16}+\dfrac{1}{17}\ne0\))

\(\Leftrightarrow x=100\)