Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 4 2017 lúc 3:27

a) y = sin2x

Hàm số có chu kỳ T = π

Xét hàm số y=sin2x trên đoạn [0;π], ta có:

y' = 2cos2x

y' = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó trên đoạn [0;π] , hàm số đạt cực đại tại π/4 , đạt cực tiểu tại 3π/4 và y C D  = y(π/4) = 1; y C T  = y(3π/4) = −1

Vậy trên R ta có:

y C Đ  = y(π/4 + kπ) = 1;

y C T  = y(3π/4 + kπ) = −1, k∈Z

b) Hàm số tuần hoàn chu kỳ nên ta xét trên đoạn [−π;π].

y′ = − sinx – cosx

y′ = 0 ⇔ tanx = −1 ⇔ x = −π4 + kπ, k∈Z

Lập bảng biến thiên trên đoạn [−π;π]

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hàm số đạt cực đại tại x = −π4 + k2π , đạt cực tiểu tại x = 3π4 + k2π (k∈Z) và

y C Đ  = y(−π4 + k2π) = 2 ;

y C T  = y(3π4 + k2π) = − 2  (k∈Z).

c) Ta có:


Do đó, hàm số đã cho tuần hoàn với chu kỳ π.

Ta xét hàm số y trên đoạn [0;π]:


y′ = sin2x

y′ = 0 ⇔ sin2x = 0 ⇔ x = kπ/2 (k∈Z)

Lập bảng biến thiên trên đoạn [0,π]


Từ đó, ta thấy hàm số đạt cực tiểu tại x = kπ/2 với k chẵn, đạt cực đại tại x = kπ/2 với k lẻ, và

y C T  = y(2mπ) = 0; yCT = y(2mπ) = 0;

y C Đ  = y((2m+1)π/2) = 1 (m∈Z)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 4 2019 lúc 4:44

Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó, hàm số đã cho tuần hoàn với chu kỳ π

Ta xét hàm số y trên đoạn [0; π ]:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y′ = sin2x

y′ = 0 ⇔ sin2x = 0 ⇔ x = k π /2 (k ∈ Z)

Lập bảng biến thiên trên đoạn [0, π ]

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó, ta thấy hàm số đạt cực tiểu tại x = k π /2 với k chẵn, đạt cực đại tại x = k π /2 với k lẻ, và

y CT  = y(2m π ) = 0;  y CT  = y(2m π ) = 0;

y CD  = y((2m+1) π /2) = 1 (m ∈ Z)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 7 2018 lúc 2:00

TXĐ: D = R

+ y' = 2cos2x – 1;

Giải bài 2 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

+ y" = -4.sin2x

Giải bài 2 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

⇒ Giải bài 2 trang 18 sgk Giải tích 12 | Để học tốt Toán 12 (k ∈ Z) là các điểm cực đại của hàm số.

Giải bài 2 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

⇒ Giải bài 2 trang 18 sgk Giải tích 12 | Để học tốt Toán 12 (k ∈ Z) là các điểm cực tiểu của hàm số.

neymar
Xem chi tiết
Hương Trà
3 tháng 2 2016 lúc 18:34

Hỏi đáp Toán

Huỳnh Văn Thiện
31 tháng 5 2017 lúc 17:19

TXĐ: R

y' = 1 - 2cos2x

y' = 0 ⇔x = kπ (k ∈ Z)

y'' = 2sin2x

x = kπ → y'' = 2 > 0

→ yCT = 1 tại x = kπ

CÔNG CHÚA THẤT LẠC
2 tháng 6 2017 lúc 11:02

Mình thường làm cách đơn giản hơn như sau:
1) y = x – sin2x + 2
Vì hàm sin 2x tuần hoàn trên đoạn [-Pi , Pi]
Nên ta chỉ cần xét y trên đoạn [ -Pi , Pi]
Y ‘ = 1 – 2cos2x => y’ = 0 <> x = +or-Pi/6 + k2Pi = +or- Pi/6 thuộc [ - Pi, Pi ]
Lập bảng biến thiên như bình thường hoặc tính y” như bạn hngth cũng được
Thường thì người ta bò họ no k2Pi đi chỉ xét trên chu kì cua nó thôi. Cái này bạn có thể mở SGK 11( NC) chương LG sẽ thấy
2)
Y = 3 – 2cosx + 1 – 2cos^2x = -2cos^2x – 2cosx + 4
Đặt: t = cosx , t thuộc [-1, 1]
Y = f(t) = -2t^2 – 2t +4 , D= [-1, 1]
Xét hàm f(t) như bình thường => hàm f(t) đạt CĐ tại t = -1/2 , fCĐ = f(-1/2) = 9/2
=>hàm y đạt CĐ tại x = +or-2P/3 + k2Pi và yCĐ = 9/2
Bài này mà giải theo cách trên giữ nguyên họ no thì giải tới sáng cũng chưa ra. Đây là 2 cách đơn giản nhất để tìm cực trị hs LG còn công thức thì ko có đâu

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
23 tháng 5 2017 lúc 13:42

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 6 2017 lúc 14:03

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 11 2019 lúc 11:42

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 1 2018 lúc 6:35

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 6 2018 lúc 18:03

Đáp án A