Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Frienke De Jong
Xem chi tiết
ILoveMath
27 tháng 10 2021 lúc 15:00

ĐKXĐ: \(x\ge-\dfrac{5}{3}\)

\(\sqrt{x^2+1}+\sqrt{3x+5}=\sqrt{x^2+6x+11}\\ \Rightarrow x^2+3x+6+2\sqrt{\left(x^2+1\right)\left(3x+5\right)}=x^2+6x+11\)

\(\Rightarrow2\sqrt{\left(x^2+1\right)\left(3x+5\right)}=3x+5\\ \Rightarrow4\left(x^2+1\right)\left(3x+5\right)=9x^2+30x+25\\ \Rightarrow4\left(3x^3+5x^2+3x+5\right)=9x^2+30x+25\\ \Rightarrow12x^3+20x^2+12x+20=9x^2+30x+25\)

\(\Rightarrow12x^3+11x^2-18x-5=0\\ \Rightarrow\left(12x^3-12x^2\right)+\left(23x^2-23x\right)+\left(5x-5\right)=0\\ \Rightarrow\left(x-1\right)\left(12x^2+23x+5\right)=0\\ \Rightarrow\left(x-1\right)\left[\left(12x^2+3x\right)+\left(20x+5\right)\right]=0\\ \Rightarrow\left(x-1\right)\left(3x+5\right)\left(4x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-\dfrac{5}{3}\left(tm\right)\\x=-\dfrac{1}{4}\left(tm\right)\end{matrix}\right.\)

 

 

Nguyễn Hoàng Minh
27 tháng 10 2021 lúc 15:01

\(ĐK:x\ge-\dfrac{5}{3}\\ PT\Leftrightarrow x^2+1+3x+5+2\sqrt{\left(x^2+1\right)\left(3x+5\right)}=x^2+6x+11\\ \Leftrightarrow2\sqrt{3x^3+5x^2+3x+5}=3x+5\\ \Leftrightarrow4\left(3x^3+5x^2+3x+5\right)=\left(3x+5\right)^2\\ \Leftrightarrow12x^3+20x^2+12x+20=9x^2+30x+25\\ \Leftrightarrow12x^3+11x^2-18x-5=0\\ \Leftrightarrow12x^3-12x^2+23x^2-23x+5x-5=0\\ \Leftrightarrow\left(x-1\right)\left(12x^2+23x+5\right)=0\\ \Leftrightarrow\left(x-1\right)\left(3x+5\right)\left(4x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-\dfrac{5}{3}\left(tm\right)\\x=-\dfrac{1}{4}\left(tm\right)\end{matrix}\right.\)

bí ẩn
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 7 2021 lúc 0:36

f) Ta có: \(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}=4\)

\(\Leftrightarrow4\left|x+1\right|-3\left|x+1\right|=4\)

\(\Leftrightarrow\left|x+1\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)

g) Ta có: \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)

\(\Leftrightarrow5\sqrt{x+1}-\sqrt{x+1}=0\)

\(\Leftrightarrow x+1=0\)

hay x=-1

helpmeplsss
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 9 2023 lúc 20:33

a: =>|2x-1|=3

=>2x-1=3 hoặc 2x-1=-3

=>2x=-2 hoặc 2x=4

=>x=2 hoặc x=-1

c: \(\Leftrightarrow\left|x-3\right|=11-x\)

=>x<=11 và (x-3)^2=(11-x)^2

=>x<=11 và x^2-6x+9=x^2-22x+121

=>x<=11 và 16x=112

=>x=7

d:

ĐKXĐ: 3x+19>=0

=>x>=-19/3

PT =>x>=-3 và (3x+19)=(x+3)^2=x^2+6x+9

=>x>=-3 và x^2+6x+9-3x-19=0 

=>x>=-3 và (x+5)(x-2)=0

=>x=2

e: =>\(\sqrt{x^2+x+5}=x+1\)

=>x>=-1 và x^2+x+5=x^2+2x+1

=>x>=-1 và 2x+1=x+5

=>x=4

nguyenquockhang
Xem chi tiết
Kim Trí Ngân
Xem chi tiết
Nguyễn Thị Bình Yên
Xem chi tiết
Nguyễn Thị Bình Yên
17 tháng 1 2019 lúc 22:06

@Nguyễn Huy Thắng@Mysterious Person@bảo nam trần@Lightning Farron@Thiên Thảo@Sky SơnTùng

Phạm Quỳnh Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 10 2021 lúc 22:59

a: ĐKXĐ: \(x\ge1\)

b: ĐKXĐ: \(x< 0\)

c: ĐKXĐ: \(\left[{}\begin{matrix}x\ge11\\x\le3\end{matrix}\right.\)

Lấp La Lấp Lánh
23 tháng 10 2021 lúc 23:04

1) ĐKXĐ: \(\left\{{}\begin{matrix}2x+11\ge0\\x-1\ge0\end{matrix}\right.\)\(\Leftrightarrow x\ge1\)

2) ĐKXĐ: \(\left\{{}\begin{matrix}-5x\ge0\\x\ne0\end{matrix}\right.\)\(\Leftrightarrow x< 0\)

3) ĐKXĐ: \(7x^2+1\ge0\left(đúng\forall x\right)\Leftrightarrow x\in R\)

4) ĐKXĐ: \(x^2-14x+33\ge0\Leftrightarrow\left(x-11\right)\left(x-3\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-11\ge0\\x-3\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-11\le0\\x-3\le0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x\ge11\\x\le3\end{matrix}\right.\)

5) ĐKXĐ: 

+) \(-x^2+6x+16\ge0\)

\(\Leftrightarrow-\left(x^2-6x+9\right)+25\ge0\)

\(\Leftrightarrow\left(x-3\right)^2\le25\Leftrightarrow-5\le x-3\le5\)

\(\Leftrightarrow-2\le x\le8\)

+) \(3x^2\ne0\Leftrightarrow x\ne0\)

\(\Rightarrow\left\{{}\begin{matrix}-2\le x\le8\\x\ne0\end{matrix}\right.\)

 

Mai Thị Thúy
Xem chi tiết
Minh Hiếu
Xem chi tiết
Đỗ Tuệ Lâm
22 tháng 2 2022 lúc 18:29

1.

đk: \(x\ge2\)

Đặt y = \(\sqrt{x+2}\) ta biến pt về dạng pt thuần nhất bậc 3 đối vs x và y:

ta có : \(x^3-3x^2+2y^3-6x=0\)

\(\Leftrightarrow x^3-3xy^2+2y^3=0\)

\(\Rightarrow\left\{{}\begin{matrix}x=y\\x=-2y\end{matrix}\right.\)

ta sẽ có nghiệm : \(x=2;x=2-2\sqrt{3}\)

Minh Hiếu đã xóa
missing you =
22 tháng 2 2022 lúc 19:56

\(1.đk:\left(x+2\right)^3\ge0\Leftrightarrow x\ge-2\)

\(pt\Leftrightarrow x^3-3x\left(x+2\right)+2\sqrt{\left(x+2\right)^3}=0\)

\(\Leftrightarrow x^3-x\left(x+2\right)+2\sqrt{\left(x+3\right)^2}-2x\left(x+2\right)=0\)

\(\Leftrightarrow x\left[x^2-\left(x+2\right)\right]+2\left(x+2\right)\left(\sqrt{x+2}-x\right)=0\)

\(\Leftrightarrow x\left[\left(x-\sqrt{x+2}\right)\left(x+\sqrt{x+2}\right)\right]+2\left(x+2\right)\left(\sqrt{x+2}-x\right)=0\)

\(\Leftrightarrow\left(\sqrt{x+2}-x\right)\left[-x\left(\sqrt{x+2}+x\right)+2\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(\sqrt{x+2}-x\right)^2\left(2\sqrt{x+2}+x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+2}=x\left(2\right)\\2\sqrt{x+2}=-x\left(3\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2=x+2\end{matrix}\right.\)\(\Leftrightarrow x=2\left(tm\right)\)

\(\left(3\right)\Leftrightarrow\left\{{}\begin{matrix}-x\ge0\Leftrightarrow x\le0\\x^2=4\left(x+2\right)\end{matrix}\right.\)\(\Leftrightarrow x=2-2\sqrt{3}\left(tm\right)\)

missing you =
22 tháng 2 2022 lúc 20:10

\(2.đk:x^2;y^2\ge2018\Leftrightarrow\left[{}\begin{matrix}x;y\le-\sqrt{2018}\\x;y\ge\sqrt{2018}\end{matrix}\right.\)

\(pt\Leftrightarrow\sqrt{x^2+11}-\sqrt{y^2+11}+\sqrt{x^2-2018}-\sqrt{y^2-2018}+x^2-y^2=0\)

\(\Leftrightarrow\left(x+y\right)\left(x-y\right)+\dfrac{x^2+11-y^2-11}{\sqrt{x^2+11}+\sqrt{y^2+11}}+\dfrac{x^2-2018-y^2+2018}{\sqrt{x^2-2018}+\sqrt{y^2-2018}}=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\left[1+\dfrac{1}{\sqrt{x^2+11}+\sqrt{y^2+11}}+\dfrac{1}{\sqrt{x^2-2018}+\sqrt{y^2+2018}}>0\right]=0\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)

\(x=y\Rightarrow M=x^{11}-x^{2018}\)

\(x=-y\Rightarrow M=-y^{11}-y^{2018}=:vvv\) (đến đây chịu)