Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
Nguyễn Hoàng Minh
20 tháng 10 2021 lúc 16:05

\(\Rightarrow4A=4+4^2+4^3+...+4^{100}\\ \Rightarrow4A-A=\left(4+4^2+4^3+...+4^{100}\right)-\left(1+4+4^2+...+4^{99}\right)\\ \Rightarrow3A=4^{100}-1< 4^{100}=B\\ \Rightarrow A< \dfrac{B}{3}\)

Nguyễn Thị Vương Nga
Xem chi tiết
Nguyễn Thị Vương Nga
Xem chi tiết
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 4 2021 lúc 22:15

Bài 2: 

b) Gọi \(d\inƯC\left(21n+4;14n+3\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}42n+8⋮d\\42n+9⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\inƯ\left(1\right)\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(21n+4;14n+3\right)=1\)

hay \(\dfrac{21n+4}{14n+3}\) là phân số tối giản(đpcm)

Nguyễn Lê Phước Thịnh
3 tháng 4 2021 lúc 22:11

Bài 1: 

a) Ta có: \(A=1+2-3-4+5+6-7-8+...-299-300+301+302\)

\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(297+298-299-300\right)+301+302\)

\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)+603\)

\(=75\cdot\left(-4\right)+603\)

\(=603-300=303\)

Nguyễn Lê Phước Thịnh
3 tháng 4 2021 lúc 22:13

Bài 1: 

c) Ta có: \(B=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)

\(\Leftrightarrow3B=1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\)

\(\Leftrightarrow3B-B=1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}-\dfrac{1}{3}-\dfrac{1}{3^2}-...-\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}\)

\(\Leftrightarrow2B=1-\dfrac{1}{3^{99}}\)

\(\Leftrightarrow B=\dfrac{3^{99}-1}{3^{99}\cdot2}\)

Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 4 2021 lúc 14:08

Bài 2: 

a) Vì tổng của hai số là 601 nên trong đó sẽ có 1 số chẵn, 1 số lẻ

mà số nguyên tố chẵn duy nhất là 2

nên số lẻ còn lại là 599(thỏa ĐK)

Vậy: Hai số nguyên tố cần tìm là 2 và 599

HELLO^^^$$$
4 tháng 4 2021 lúc 14:48

b,Gọi ƯCLN(21n+4,14n+3)=d

21n+4⋮d ⇒42n+8⋮d

14n+3⋮d ⇒42n+9⋮d

(42n+9)-(42n+8)⋮d

1⋮d ⇒ƯCLN(21n+4,14n+3)=1

Vậy phân số 21n+4/14n+3 là phân số tối giản

 

HELLO^^^$$$
4 tháng 4 2021 lúc 15:24

c,xy-2x+5y-12=0

xy-2x+5y-12+2=0+2

xy-2x+5y-10=2

xy-2x+5y-5.2=-2

x.(y-2)+5.(y-2)=2

(y-2).(x+5)=2

Sau đó bạn tự lập bảng 

Trịnh hà hoa
Xem chi tiết
Phạm Băng Băng
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 12 2021 lúc 22:00

\(S=\left(1+4\right)+\left(4^2+4^3\right)+...+\left(4^{98}+4^{99}\right)\\ S=\left(1+4\right)+4^2\left(1+4\right)+...+4^{98}\left(1+4\right)\\ S=\left(1+4\right)\left(1+4^2+...+4^{98}\right)=5\left(1+4^2+...+4^{98}\right)⋮5\)

Nguyễn Lê Phước Thịnh
19 tháng 12 2021 lúc 22:01

\(S=\left(1+4\right)+...+4^{98}\left(1+4\right)\)

\(=5\left(1+...+4^{98}\right)⋮5\)

Hoàng Thu Hương
Xem chi tiết
Aurora
24 tháng 3 2021 lúc 19:56

Ta có:

A=9999931999−5555571997

A=9999931998.999993−5555571996.555557

A=(9999932)999.999993 − (5555572)998.555557

A=\(\overline{\left(....9\right)}^{999}\) . 999993 - \(\overline{\left(...1\right)}.\text{555557}\)

A=\(\overline{\left(...7\right)}-\overline{\left(...7\right)}\)

A= \(\overline{\left(...0\right)}\)

Vì A có tận cùng là 0 nên \(A⋮5\)

phan van co 4
Xem chi tiết
Hoàng Nguyễn Xuân Dương
28 tháng 4 2015 lúc 7:14

 A= (21+22+23)+(24+25+26)+...+(258+259+260)

   =20(21+22+23)+23(21+22+23)+...+257(21+22+23)

   =(21+22+23)(20+23+...+257)

   =     14(20+23+...+257) chia hết cho 7

Vậy A chia hết cho 7     

jimmydozen
25 tháng 6 2015 lúc 15:08

gọi 1/41+1/42+1/43+...+1/80=S

ta có :

S>1/60+1/60+1/60+...+1/60

S>1/60 x 40

S>8/12>7/12

Vậy S>7/12

Nguyen Quynh Tram
15 tháng 10 2015 lúc 21:23

cho mình hỏi nhờ cũng cái đề bài này nhưng chia hết cho 37 làm thế nào

 

Nguyễn Quỳnh Anh
Xem chi tiết