Tính giá trị biểu thức b. 42567 + 12328 : 8
Tính giá trị biểu thức
b. 42567 + 12328 : 8
b. 42567 + 12328 : 8 = 42567 + 1541 = 44108
Câu 3: Tính giá trị của biểu thức C = 5a − 4b + 7a + 8 . Biết a-b=8.
Câu 4: Tính giá trị của biểu thức D =4a + 10b - b+ 2a. Biết 2a+3b=12
Câu 5: Tính giá trị của biểu thức D=21a + 9b — 6a — 4b. Biết 3a+b=18
Câu 5:
\(D\left(2\right)=21a+9b-6a-4b\)
\(D\left(2\right)=\left(21a-6a\right)+\left(9b-4b\right)\)
\(D\left(2\right)=15a+5b\)
Mà: \(3a+b=18\Rightarrow b=18-3b\)
\(\Rightarrow D\left(2\right)=15a+5\left(18-3b\right)\)
\(D\left(2\right)=15a+90-15a\)
\(D\left(2\right)=90\)
Vậy: ...
Câu 4:
\(D\left(1\right)=4a+10b-b+2a\)
\(D\left(1\right)=\left(4a+2a\right)+\left(10b-b\right)\)
\(D\left(1\right)=6a+9b\)
Mà: \(2a+3b=12\Rightarrow a=\dfrac{12-3b}{2}\)
\(\Rightarrow D\left(1\right)=6\left(\dfrac{12-3b}{2}\right)+9b\)
\(D\left(1\right)=\dfrac{6\left(12-3b\right)}{2}+9b\)
\(D\left(1\right)=3\left(12-3b\right)+9b\)
\(D\left(1\right)=36-9b+9b\)
\(D\left(1\right)=36\)
Vậy: ...
Câu 3:
Sửa đề: \(C=5a-4b+7a-8b\)
\(C=\left(5a+7a\right)-\left(4b+8b\right)\)
\(C=12a-12b\)
\(C=12\left(a-b\right)\)
\(C=12\cdot8\)
\(C=96\)
Vậy: ...
Câu 3: Tính giá trị của biểu thức C = 5a − 4b + 7a + 8 . Biết a-b=8.
Câu 4: Tính giá trị của biểu thức D =4a + 10b - b+ 2a. Biết 2a+3b=12
Câu 5: Tính giá trị của biểu thức D=21a + 9b — 6a — 4b. Biết 3a+b=18
4:
D=6a+9b=3(2a+3b)=36
5:
D=15a+5b=5(3a+b)=90
Câu 3: Tính giá trị của biểu thức C = 5a − 4b + 7a + 8 . Biết a-b=8.
Câu 4: Tính giá trị của biểu thức D =4a + 10b - b+ 2a. Biết 2a+3b=12
Câu 5: Tính giá trị của biểu thức D=21a + 9b — 6a — 4b. Biết 3a+b=18
a) Tính giá trị của biểu thức a + b x 2 với a = 8, b = 2.
b) Tính giá trị của biểu thức (a + b) : 2 với a = 15, b = 27.
Giá trị của biểu thức a + b × 2 với a = 8, b = 2 là:
a + b × 2 = 8 + 2 × 2 = 12
Giá trị của biểu thức (a + b) : 2 với a = 15, b = 27 là:
(a + b) : 2 = (15 + 27) : 2 = 21
Cho biểu thức với . a) Rút gọn biểu thức ; b) Tìm điều kiện của để ; c) Tìm các giá trị nguyên của để có giá trị nguyên; d)* Với , hãy tìm giá trị lớn nhất của . Bài 8: Cho biểu thức ; với . a) Tính giá trị biểu thức khi . b) Rút gọn biểu thức . c) So sánh với 1. d) Tìm để có giá trị nguyên.
Tính giá trị của biểu thức a A nhân 2,4Cho a + b = 12 và a – b = 8, tính giá trị các biểu thức sau a. 10 . a + 8 . b – 6 . a – 7 . b6 với a 3,05b 5 6 7 12 a, với a 15 8
Bài 8. a) Tính giá trị của biểu thức 0x2y4z + 7/2x2y4z – 2/5x2y4z tại x = 2 ; y =1/2 ; z = -1.
a) Tính giá trị của biểu thức 2/5x4z3y – 0x4z3y + x4z3y tại x = 2 ; y =1/2 ; z = -1.
b) Tính giá trị của biểu thức xy3 + 5xy3 + ( - 7xy3) tại
c) Tính giá trị của biểu thức tại x = 3, y = -1/2
a: \(A=0x^2y^4z+\dfrac{7}{2}x^2y^4z-\dfrac{2}{5}x^2y^4z=\dfrac{31}{10}x^2y^4z=\dfrac{31}{10}\cdot2^2\cdot\dfrac{1}{16}\cdot\left(-1\right)=-\dfrac{31}{40}\)
a: \(=\dfrac{7}{5}x^4z^3y=\dfrac{7}{5}\cdot2^4\cdot\left(-1\right)^3\cdot\dfrac{1}{2}=-\dfrac{56}{5}\)
b: \(=-xy^3\)
Bài 1: Cho xyz=2 và x+y+z=0. Tính giá trị của biểu thức: N=(x+y)(y+z)(x+z)
Bài 2: Tính giá trị biểu thức: 3a-2b / a-3b với a/b= 10/3
Bài 5: Tính giá trị của biểu thức: a-8 / b-5 - 4a-b / 3a+3 với a-b=3
Bài 1 :
\(N=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Ta có : \(x+y+z=0\Rightarrow x+y=-z;y+z=-x;x+z=-y\)
hay \(-z.\left(-x\right)\left(-y\right)=-zxy\)
mà \(xyz=2\Rightarrow-xyz=-2\)
hay N nhận giá trị -2
Bài 2 :
\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)Đặt \(a=10k;b=3k\)
hay \(\frac{30k-6k}{10k-9k}=\frac{24k}{k}=24\)
hay biểu thức trên nhận giá trị là 24
c, Ta có : \(a-b=3\Rightarrow a=3+b\)
hay \(\frac{3+b-8}{b-5}-\frac{4\left(3+b\right)-b}{3\left(3+b\right)+3}=\frac{-5+b}{b-5}-\frac{12+4b-b}{9+3b+3}\)
\(=\frac{-5+b}{b-5}-\frac{12+3b}{6+3b}\)quy đồng lên rút gọn, đơn giản rồi
1.Ta có:\(x+y+z=0\)
\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)
\(\Rightarrow N=\left(x+y\right)\left(y+z\right)\left(x+z\right)=\left(-z\right)\left(-x\right)\left(-y\right)=-2\)
2.Ta có:\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)
Đặt \(\frac{a}{10}=\frac{b}{3}=k\Rightarrow a=10k;b=3k\)
Ta có:\(A=\frac{3a-2b}{a-3b}=\frac{3.10k-2.3k}{10k-3.3k}=\frac{30k-6k}{10k-9k}=\frac{k\left(30-6\right)}{k\left(10-9\right)}=24\)
Vậy....