Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Kim Ngân
Xem chi tiết
Hồng Hà Thị
Xem chi tiết
Đỗ Ngọc Hà Giang
Xem chi tiết
Akai Haruma
18 tháng 11 2023 lúc 20:12

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

Akai Haruma
18 tháng 11 2023 lúc 20:15

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

Akai Haruma
18 tháng 11 2023 lúc 20:16

Bài 2:

c.

Gọi $d=ƯCLN(2n+1, n+1)$

$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$

Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.

d.

Gọi $d=ƯCLN(n+1, 3n+4)$

$\Rightarrow n+1\vdots d; 3n+4\vdots d$

$\Rightarrow 3n+4-3(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$

$\Rightarrow$ 2 số này nguyên tố cùng nhau.

Dương Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 1 2023 lúc 0:10

Gọi d=ƯCLN(2n+1;2n^2-1)

=>2n+1 chia hết cho d và 2n^2-1 chia hết cho d

=>2n^2+n chia hết cho d và 2n^2-1 chia hết cho d

=>n+1 chia hết cho d và 2n+1 chia hết cho d

=>2n+2 chia hết cho d và 2n+1 chia hết cho d

=>1 chia hết cho d

=>d=1

=>2n+1 và 2n^2-1 là hai số nguyên tố cùng nhau

Huỳnh Minh Nghi
Xem chi tiết
soyeon_Tiểu bàng giải
21 tháng 8 2016 lúc 10:13

Gọi d = ƯCLN(2n + 1; 2n + 3) (d thuộc N*)

=> 2n + 1 chia hết cho d; 2n + 3 chia hết cho d

=> (2n + 3) - (2n + 1) chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 2 chia hết cho d

Mà 2n + 1 lẻ => d lẻ => d = 1

=> ƯCLN(2n + 1; 2n + 3) = 1

Chứng tỏ ...

Lâm Nam Leo
21 tháng 8 2016 lúc 10:17

Chứng tỏ rằng (2n+1) và (2n+3) là cặp số nguyên tố cùng nhau với mọi số tự nhiên n.

Gọi d = ƯCLN(2n + 1; 2n + 3) (d thuộc N*)

=> 2n + 1 chia hết cho d; 2n + 3 chia hết cho d

=> 2 chia hết cho d

Mà 2n + 1 lẻ => d lẻ => d = 1

=> ƯCLN(2n + 1; 2n + 3) = 1

CHứng tỏ

Chun jun su
25 tháng 11 2016 lúc 12:29

gọi  d lkaf ucln

Phạm Tiến Việt
Xem chi tiết
Học tập là số 1
30 tháng 7 2017 lúc 18:03

khó z mà vẫn đăg

Lê Trần Quỳnh Anh
28 tháng 11 2017 lúc 19:10

Gọi ƯCLN( 2n+1; 6n+5) là d ( d thuộc n sao)
Ta có: 2n+1 chia hết d

           6n+5 chia hết d

= 3.(2n+1) chia hết d

6n+5 chia hết d

=6n+3 chia hết d

6n+5 chia hết d

(6n+5)-(6n+3) chia hết d

=2 chia hết d

d=1;2

Mà 6n+5 không chia hết 2; suy ra d=1

Vậy 6n+5 và 2n+1 nguyên tố cùng nhau

kick hộ mình nhé

Trang Lê
Xem chi tiết
Đỗ Lê Tú Linh
23 tháng 6 2015 lúc 9:36

Gọi ƯCLN(2n+3;n+2)=d

Ta có: 2n+3 chia hết cho d;n+2 chia hết cho d

=>2n+3 chia hết cho d; 2(n+2)chia hết cho d

=> 2n+3 chia hết cho d;2n+4 chia hết cho d

=>[2n+4-(2n+3)]chia hết cho d

=>2n+4-2n-3 chia hết cho d

=>1 chia hết cho d hay d=1=> ƯCLN(2n+3;n+2)=1

Vậy với mọi số tự nhiên n thì 2 số sau 2n+3 và n+2 là số nguyên tố cùng nhau

Chúc bạn học tốt!^_^

Nguyễn Thị Thanh Lộc
Xem chi tiết
Nguyễn  Thuỳ Trang
23 tháng 11 2015 lúc 14:32

gọi d>0 là ước dung của 2n+1 và 6n+5

d là ước số 3(2n+1)=6n+3

(6n+5)_(6n+3)=2

suy ra d là ước của số lẻ :2n+1 suy ra d=1

vậy 2n+1 và 6n+5 là 2 nguyên tố cùng nhau

**** nhé Thanh Lộc thông minh

Phuong ao cuoi
Xem chi tiết
Phan Dang Hai Huy
27 tháng 12 2017 lúc 17:21

khó quá khó tìm,k đi!!!!!

Kim Seok Jin
Xem chi tiết
Vũ Thị Thanh
25 tháng 3 2021 lúc 19:48

đừng để anh nóng hơi mệt đấy

Khách vãng lai đã xóa