Cho hai tam giác ABC và MNP đồng dạng với nhau. Biết A B M N = 1 3 và chu vi tam giác ABC là 60cm . Tính chu vi tam giác MNP?
A. 180cm
B. 20cm
C. 30cm
D. 57cm
Cho 2 tam giác ABC và MNP đồng dạng với nhau. Biết chu vi tam giác ABC là 40cm; AB = 4cm; MN = 10cm . Tính chu vi tam giác MNP?
A. 50cm
B. 60cm
C. 100cm
D. 80cm
Vì tam giác ABC đồng dạng với tam giác MNP nên;
Theo tính chất dãy tỉ số bằng nhau ta có:
Chọn đáp án C
Cho ΔABC và ΔMNP đồng dạng với nhau theo tỉ số đồng dạng k = 3/2 . Chu vi tam giác ABC bằng 36cm. Chu vi tam giác MNP là:
A. 24cm
B. 54cm
C. 18cm
D. 12cm
Bài 1. Cho tam giác ABC và tam giác MNP đồng dạng với nhau theo tỉ số 13 , 𝐴𝐵=3𝑐𝑚;𝑁𝑃=15. Tính các cạnh còn lại của hai tam giác biết chu vi tam giác ABC là 14cm.
Bài 2. Cho tam giác ABC có AB=3cm; AC=7cm và BC=5cm. Biết tam giác MPN đồng dạng với tam giác ABC có cạnh nhỏ nhất là 4,5 cm. Tính các cạnh còn lại của tam giác MPN.
Bài 3. Cho tam giác ABC có AB=5cm; BC=8cm; AC=7cm. Lấy điểm D nằm trên cạnh BC sao cho BD=2cm. Qua D kẻ đường thẳng song song với AB và AC lần lượt cắt AC và AB tại F và E.
a) Chứng minh BDE đồng dạng với DCF
b) Tính chu vi tứ giác AEDF.
Cho tam giác ABC có trọng tâm G. Gọi M,N,P theo thứ tự là trung điểm của GA, GB, GC
a. CMR tam giác MNP đồng dạng với tam giác ABC với tỉ số đồng dạng k = 1/2
b. Tính Chu vi của tam giác ABC biết chu vi của tam giác MNP bằng 18cm
Giúp mk nha ngày kia phải nộp rồi
a) Xét tg AGB có: M là trung điểm của GA (gt); N là trung điểm của GB (gt)
\(\Rightarrow\)MN là đường trung bình của tg \(\Rightarrow\)MN= 1/2 AB \(\Rightarrow\)MN/AB =1/2
CM tương tự: MP/AC =1/2 ; NP/BC =1/2
Xét tg MNP và tg ABC có: MN/AB =1/2 (cmt); MP/AC =1/2 (cmt); NP/BC =1/2 (cmt)
\(\Rightarrow\)tg MNP \(\infty\)tg ABC (c.c.c) theo tỉ số 1/2
b) tg MNP \(\infty\)tg ABC (c.c.c) theo tỉ số 1/2 \(\Rightarrow\)\(\frac{P\Delta MNP}{P\Delta ABC}=\frac{1}{2}\)mà \(P\Delta MNP=18cm\Rightarrow\)\(P\Delta ABC=\)2.18=36cm
(mk vẽ hình hơi xấu thông cảm nha)
Cho ∆ABC với AB= 6cm; AC= 9cm; BC= 12cm và ∆MNP với MN= 4cm; MP= 6cm; NP= 8cm.a)Chứng minh rằng tam giác ABC đồng dạng với tam giác MNP .b)Tính tỉ số chu vi của hai tam giác.
Bài 1. Tam giác ABC và tam giác DEF trong các trường hợp sau có đồng dạng với nhau ko? Nếu có hãy kể tên các cặp góc bằng nhau.
a) AB = 4cm, BC = 6cm, AC = 5cm, DE = 10cm, DF = 12cm, EF = cm.
b) AB = 24cm, BC = 21cm, AC = 27cm, DE = 28cm, DF = 36cm, EF =32cm.
c) AB = DE = 12cm, AC = DF = 18cm, BC = 27cm, EF = 8cm.
d) AB/3 = BC/4 = AC/5 = k, DE/3 = EF/4 = DF/5 = h (k,h > 0)
Bài 2. Cho tam giác ABC, trọng tâm G. Gọi M,N,P lần lượt là trung điểm các đoạn thẳng AG,BG,CG.
a) Chứng minh tam giác MNP đồng dạng với tam giác ABC
b) Tính chu vi tam giác ABC biết chu vi tam giác MNP = 20cm.
bài1
a) EF=??
b) không đồng dạng
c) không đồng dạng
d) Đồng dạng (vì sao thì bạn nhắn cho mình nha)
các cặp góc bằng nhau ABC=DEF; BCA=EFD; CAB=FDE
bài 2
a) theo tính chất đường trung bình trong mỗi tam giác (không hiểu thì nhắn cho mình)
ta có MN=1/2AB => MN/AB=1/2 (1)
NM=1/2BC => NP/BC=1/2 (2)
MP=1/2AC => MP/AC=1/2 (3)
từ (1),(2),(3) => MNP đồng dạng với ABC
b) vì MNP đồng dạng với ABC với tỉ số k là 2 ( theo câu a)
nên chu vi ABC = 2 lần chu vi MNP =40cm
Cho tam giác ABC đồng dạng với tam giác MNP theo tỉ số 2/5. Tính chu vi mỗi tam giác biết hiệu chu vi của hai tam giác là 51cm
Ta gọi chu vi của hai tam giác ABC và MNP lần lượt là x, y.
Theo giả thiết, ta có: x y = 2 5 và y - x = 51.
Từ đó tính được y = 85cm; x = 34cm
a) Từ trường hợp đồng dạng thứ ba của hai tam giác, xét xem tam giác \(ABC\) vuông tại \(A\) và tam giác \(MNP\) vuông tại \(M\) có \(\widehat B = \widehat N\) thì hai tam giác đó có đồng dạng với nhau không.
b) Từ trường hợp đồng dạng thứ hai của hai tam giác, xét xem nếu tam giác \(ABC\) vuông tại \(A\) và tam giác \(MNP\) vuông tại \(M\) có \(\frac{{AB}}{{MN}} = \frac{{AC}}{{MP}}\) thì hai tam giác đó có đồng dạng với nhau không.
a) Xét tam giác \(ABC\) và tam giác \(MNP\) ta có:
\(\widehat B = \widehat N\) (giả thuyết)
\(\widehat A = \widehat M = 90^\circ \).
Do đó, \(\Delta ABC\backsim\Delta MNP\) (g.g)
b) Xét tam giác \(ABC\) và tam giác \(MNP\) ta có:
\(\frac{{AB}}{{MN}} = \frac{{AC}}{{MP}}\) (giả thuyết)
\(\widehat A = \widehat M = 90^\circ \).
Do đó, \(\Delta ABC\backsim\Delta MNP\) (c.g.c).
nếu tam giác abc đồng dạng với tam giác mnp theo tỉ số 4 thì tỉ số chu vi của tam giáp abc và tam giác mnp là
a) 4. b) 16. c) 8. d) 0.25