Tam giác ABC vuông tại A, AB = 20 cm, BC = 29 cm, ta có tanB=
A. 20 21
B. 20 29
C. 21 20
D. 21 29
Tam giác ABC vuông tại A có AB = 20 cm ; BC = 29 cm ,giá trị của sinC là :
Ta có : sinx = đối/ huyền. => SinC = 20/29
Chứng minh rằng tam giác \(ABC\) vuông trong các trường hợp sau:
a) \(AB = 8\)cm, \(AC = 15\)cm, \(BC = 17\)cm
b) \(AB = 29\)cm, \(AC = 21\)cm, \(BC = 20\)cm
c) \(AB = 12\)cm, \(AC = 37\), \(BC = 35\)cm
a) Ta có: \({8^2} + {15^2} = {17^2}\) suy ra \(A{B^2} + A{C^2} = B{C^2}\). Vậy tam giác \(ABC\) vuông tại \(A\)
b) Ta có: \({20^2} + {21^2} = {29^2}\) suy ra \(B{C^2} + A{C^2} = A{B^2}\). Vậy tam giác \(ABC\) vuông tại \(C\)
c) Ta có: \({12^2} + {35^2} = {37^2}\) suy ra \(A{B^2} + B{C^2} = A{C^2}\). Vậy tam giác \(ABC\) vuông tại \(B\)
cho tam giác ABC cân tại A kẻ AH vuông góc với BC (H thuộc BC)
a) chứng minh tam giác ABH = tam giác ABH suy ra AH là tia phân giác của BAC
b) Kẻ HD vuông với AB (D ∈ AB), HE⊥ AC (E ∈ AC).chứng minh ▲HDE cân
c) Nếu cho AB= 29 cm, AH= 20 cm. tính độ dài cạnhp AB?
d) chứng minh BC song song DE
e) nếu cho BAC= 120 độ thì▲ HDE trở thành tam giác gì? vì sao
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔAHC
Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác
b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
Suy ra: HD=HE và AD=AE
d: Xét ΔABC có
AD/AB=AE/AC
nên DE//BC
Cho tam giác HQA có HQ = 20 cm ; QA = 29 cm ; AH = 21 cm . Chứng minh tam giác HQA vuông
Ta có
\(QA^2=HQ^2+AH^2\\ \Rightarrow29^2=20^2+21^2\\ \Rightarrow841=400+441\\ \Rightarrow841=841\)
=> Tam giác HQA vuông tại H
Cho tam giác abc vuông tại a ,ah là đường cao của tam giác ABC AB = 15 cm AC = 20 cm BC = 25 cm tính ah
Cho tam giác ABC có BC = 52 cm, AB = 20 cm, AC = 48 cm.
a. Tam giác ABC có vuông không?
b. Kẻ AH vuông góc với BC tại H. Tính độ dài AH.
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{240}{13}\left(cm\right)\)
a. Ta có: BC2=AB2+AC2, suy ra tam giác ABC vuông tại A.
b. Ta có: AB.AC=AH.BC, suy ra AH=AB.AC/BC=20.48/52=240/13.
Bài 1: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AH=24 cm và HC=18 cm. Tính: BH, ,BC,AC,AB và diện tích tam giác ABC Bài 2: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB= 12 cm và BC=20 cm. Tính: BH, ,AC,HC,AH và diện tích tam giác ABC Bài 3: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB=3 cm và AC=4 cm. Tính: BH, ,BC,HC,AH và diện tích tam giác ABC Bài 4: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AC=15 cm và AH =12 cm. Tính: BH, ,BC,AB,AH và diện tích tam giác ABC Bài 5:Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB=20 cm và HC=9cm. Tính: BH, ,BC,AC,AH và diện tích tam giác ABC
Bài 5:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+9\right)=400\)
\(\Leftrightarrow BH^2+25HB-16HB-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
hay BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=18^2+20^2=724\)
hay \(BC=2\sqrt{181}cm\)
Vậy: \(BC=2\sqrt{181}cm\)
có tam giác nào là tam giác vuông trong các tam giác có độ dài ba cạnh như sau:
a) 15 cm; 8 cm; 18 cm.
b) 21 dm; 20 dm; 29 dm.
c) 5m; 6m; 8m.
b: \(29^2=21^2+20^2\)
nên đây là tam giác vuông
a: Vì không có cạnh nào khi bình phương lên bằng tổng các bình phương của hai cạnh kia nên tam giác này không vuông
c: Tương tự câu a