Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Diệp Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 12 2021 lúc 14:20

1: Xét ΔOAD và ΔOCB có

OA=OC

\(\widehat{O}\) chung

OD=OB

Do đó: ΔOAD=ΔOCB

Suy ra: AD=CB

Thảo Trân
Xem chi tiết
Phươnq Anh
Xem chi tiết
Điệp Ánh
Xem chi tiết
Thao Le
Xem chi tiết
Nguyễn Thị Bảo Trang
Xem chi tiết
Nguyễn Ngọc Hân
25 tháng 2 2021 lúc 22:04

ờ...tớ ko nhầm thì thừa are

nếu bỏ are thì she's making a papper boat

Khách vãng lai đã xóa
nguyễn Thị bích Hạnh
26 tháng 2 2021 lúc 10:24

Bỏ are, she's making a paper boat

Khách vãng lai đã xóa
Nguyễn Thị Bảo Trang
26 tháng 2 2021 lúc 10:52

có 2 từ She

Khách vãng lai đã xóa
lăng nhược như
Xem chi tiết
Đỗ Thanh Hải
21 tháng 7 2021 lúc 10:41

1 having

2 taking

3 to live

4 doing

5 to be

6 writing

7 reading

8 doing

9 to live

10 to study

Phạm  Linh
21 tháng 7 2021 lúc 10:48

III.

29.having

30.taking

31.to live

32.doing

33.to be

34.writing

35.reading

36.doing

37.to live

38.to study

Dương Thị Hoàn
Xem chi tiết
Ngô Thành Chung
1 tháng 9 2021 lúc 20:45

Phương trình tương đương

\(\left[{}\begin{matrix}x=\dfrac{5\pi}{12}+k\pi\\x=-\dfrac{\pi}{4}+k\pi\end{matrix}\right.,k\in Z\)

Xét họ nghiệm \(x=\dfrac{5\pi}{12}+k\pi,k\in Z\)

Do \(-\dfrac{\pi}{2}< \dfrac{5\pi}{12}+k\pi< \dfrac{8\pi}{3}\) nên \(-\dfrac{11\pi}{12}< k\pi< \dfrac{9\pi}{4}\)

⇒ \(-\dfrac{11}{12}< k< \dfrac{9}{4}\). Mà k ∈ Z nên k ∈ {0 ; 1}

Vậy các nghiệm thỏa mãn phương trình là các phần tử của tập hợp :

S1 = \(\left\{\dfrac{5\pi}{12};\dfrac{17\pi}{12}\right\}\)

Xét họ nghiệm \(x=-\dfrac{\pi}{4}+k\pi\) với k ∈ Z. 

Do \(-\dfrac{\pi}{2}< \dfrac{-\pi}{4}+k\pi< \dfrac{8\pi}{3}\) nên \(-\dfrac{\pi}{4}< k\pi< \dfrac{35\pi}{12}\)

nên \(-\dfrac{1}{4}< k< \dfrac{35}{12}\). Mà k ∈ Z nên k∈ {0 ; 1 ; 2}

Vậy các nghiệm thỏa mãn phương trình là các phần tử của tập hợp 

S2 = \(\left\{-\dfrac{\pi}{4};\dfrac{3\pi}{4};\dfrac{7\pi}{4}\right\}\)

Vậy các nghiệm thỏa mãn phương trình là các phần tử của tập hợp

S = S1 \(\cup\) S2 = \(\left\{\dfrac{5\pi}{12};\dfrac{17\pi}{12};-\dfrac{\pi}{4};\dfrac{3\pi}{4};\dfrac{7\pi}{4}\right\}\)

13 Việt Hà
Xem chi tiết

a: \(\widehat{\left(SC;\left(ABCD\right)\right)}=\widehat{CS;CA}=\widehat{SCA}\)

Ta có: SA\(\perp\)(ABCD)

=>SA\(\perp\)AC

=>ΔSAC vuông tại A

Vì ABCD là hình vuông

nên \(AC=AD\cdot\sqrt{2}=a\sqrt{2}\)

Xét ΔSAC vuông tại A có \(tanSCA=\dfrac{SA}{AC}=\dfrac{a\sqrt{6}}{a\sqrt{2}}=\sqrt{3}\)

nên \(\widehat{SCA}=60^0\)

=>\(\widehat{SC;\left(ABCD\right)}=60^0\)

b: Ta có: BD\(\perp\)AC

BD\(\perp\)SA

SA,AC cùng thuộc mp(SAC)

Do đó: BD\(\perp\)(SAC)

\(\widehat{SB;\left(SAC\right)}=\widehat{SB;SD}=\widehat{BSD}\)

Vì ABCD là hình vuông

nên \(AC=BD=a\sqrt{2}\)

ΔSAD vuông tại A

=>\(SA^2+AD^2=SD^2\)

=>\(SD^2=\left(a\sqrt{6}\right)^2+a^2=7a^2\)

=>\(SD=a\sqrt{7}\)

ΔSAB vuông tại A

=>\(SA^2+AB^2=SB^2\)

=>\(SB=a\sqrt{7}\)

Xét ΔSBD có \(cosBSD=\dfrac{SB^2+SD^2-BD^2}{2\cdot SB\cdot SD}\)

\(=\dfrac{7a^2+7a^2-2a^2}{2\cdot a\sqrt{7}\cdot a\sqrt{7}}=\dfrac{6}{7}\)

=>\(sinBSD=\sqrt{1-\left(\dfrac{6}{7}\right)^2}=\dfrac{\sqrt{13}}{7}\)

=>\(\widehat{BSD}\simeq31^0\)

=>\(\widehat{SB;\left(SAC\right)}\simeq31^0\)