Bài 6: Ôn tập chương Vecơ trong không gian. Quan hệ vuông góc trong không gian.

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
13 Việt Hà

Giúp mình câu này với mình đang cần gấp

a: \(\widehat{\left(SC;\left(ABCD\right)\right)}=\widehat{CS;CA}=\widehat{SCA}\)

Ta có: SA\(\perp\)(ABCD)

=>SA\(\perp\)AC

=>ΔSAC vuông tại A

Vì ABCD là hình vuông

nên \(AC=AD\cdot\sqrt{2}=a\sqrt{2}\)

Xét ΔSAC vuông tại A có \(tanSCA=\dfrac{SA}{AC}=\dfrac{a\sqrt{6}}{a\sqrt{2}}=\sqrt{3}\)

nên \(\widehat{SCA}=60^0\)

=>\(\widehat{SC;\left(ABCD\right)}=60^0\)

b: Ta có: BD\(\perp\)AC

BD\(\perp\)SA

SA,AC cùng thuộc mp(SAC)

Do đó: BD\(\perp\)(SAC)

\(\widehat{SB;\left(SAC\right)}=\widehat{SB;SD}=\widehat{BSD}\)

Vì ABCD là hình vuông

nên \(AC=BD=a\sqrt{2}\)

ΔSAD vuông tại A

=>\(SA^2+AD^2=SD^2\)

=>\(SD^2=\left(a\sqrt{6}\right)^2+a^2=7a^2\)

=>\(SD=a\sqrt{7}\)

ΔSAB vuông tại A

=>\(SA^2+AB^2=SB^2\)

=>\(SB=a\sqrt{7}\)

Xét ΔSBD có \(cosBSD=\dfrac{SB^2+SD^2-BD^2}{2\cdot SB\cdot SD}\)

\(=\dfrac{7a^2+7a^2-2a^2}{2\cdot a\sqrt{7}\cdot a\sqrt{7}}=\dfrac{6}{7}\)

=>\(sinBSD=\sqrt{1-\left(\dfrac{6}{7}\right)^2}=\dfrac{\sqrt{13}}{7}\)

=>\(\widehat{BSD}\simeq31^0\)

=>\(\widehat{SB;\left(SAC\right)}\simeq31^0\)


Các câu hỏi tương tự
trần khánh dương
Xem chi tiết
ygyty
Xem chi tiết
nam congphuongnam
Xem chi tiết
Nguyễn Linh
Xem chi tiết
Miu Bé
Xem chi tiết
Mai Linh Trần Thị
Xem chi tiết
Nguyễn Linh
Xem chi tiết
Mỹ Duyên
Xem chi tiết