\(\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=7\)
Rút gọn :
\(\dfrac{\sqrt{x+\sqrt{4\left(x-1\right)}}-\sqrt{x-\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}.\left(\sqrt{x-1}-\dfrac{1}{\sqrt{x-1}}\right)\)
b)\(\left(\sqrt{2}+1\right)\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)
c)\(\left(\sqrt{5}+1\right)\left(\sqrt{7}+1\right)\left(\sqrt{35}+1\right)\left(34-4\sqrt{7}-6\sqrt{5}\right)\)
d) \(\left(\sqrt{7}+1\right)\left(2\sqrt{2}-1\right)\left(2\sqrt{14}-1\right)\left(55+12\sqrt{2}-7\sqrt{7}\right)\)
e)\(\left(3\sqrt{2}+1\right)\left(2\sqrt{3}+1\right)\left(6\sqrt{6}+1\right)\left(215-34\sqrt{3}-33\sqrt{2}\right)\)
tính
\(\sqrt{\left(2-\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)
\(\sqrt{\left(\sqrt{7}-2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)^2}\)
\(\sqrt{\left(x-3\right)^2}\left(x>3\right)\)
\(\sqrt{\left(1-x\right)^2}\left(x>1\right)\)
\(\sqrt{9a^4}\)
\(\sqrt{100a^2}\left(a< 0\right)\)
\(\sqrt{\left(2-\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\\ =\left|2-\sqrt{5}\right|+\left|2\sqrt{2}-\sqrt{5}\right|\\ =\sqrt{5}-2+2\sqrt{2}-\sqrt{5}\\ =-2+\sqrt{2}\)
\(\sqrt{\left(\sqrt{7}-2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)}\\ =\left|\sqrt{7}-2\sqrt{2}\right|+\left|3-2\sqrt{2}\right|\\ =2\sqrt{2}-\sqrt{7}+3-2\sqrt{2}\\ =3-\sqrt{7}\)
\(\sqrt{\left(x-3\right)^2}\\ =\left|x-3\right|\\ =x-3\left(vì.x>3\right)\)
\(\sqrt{\left(1-x\right)^2}\\ =\left|1-x\right|\\ =x-1\left(vì.x>1\right)\)
\(\sqrt{9a^4}=\sqrt{\left(3a^2\right)^2}\\ =\left|3a^2\right|\\ =3a^2\)
\(\sqrt{100a^2}\\ =\sqrt{\left(10a\right)^2}\\ =\left|10a\right|\\ =-10a\left(vì.a< 0\right)\)
Lời giải:
a. $=|2-\sqrt{5}|+|2\sqrt{2}-\sqrt{5}|$
$=(\sqrt{5}-2)+(2\sqrt{2}-\sqrt{5})=-2+2\sqrt{2}$
b. $=|\sqrt{7}-2\sqrt{2}|+|3-2\sqrt{2}|=2\sqrt{2}-\sqrt{7}+(3-2\sqrt{2})$
$=3-\sqrt{7}$
c.
$=|x-3|=x-3$
d.
$=|1-x|=x-1$
$=\sqrt{(3a^2)^2}=|3a^2|=3a^2$
e.
$=\sqrt{(10a)^2}=|10a|=-10a$
a) \(\left(\dfrac{1}{2-\sqrt{3}}-\dfrac{3}{\sqrt{7}-2}\right):\dfrac{2}{\sqrt{7}+\sqrt{3}}\)
b) \(\left(\dfrac{x-\sqrt{x}}{1-\sqrt{x}}-1\right):\left(\sqrt{x}-x\right)+\dfrac{1}{x}\)
a) Ta có: \(\left(\dfrac{1}{2-\sqrt{3}}-\dfrac{3}{\sqrt{7}-2}\right):\dfrac{2}{\sqrt{7}+\sqrt{3}}\)
\(=\left(2+\sqrt{3}-\sqrt{7}-2\right):\dfrac{\left(\sqrt{7}-\sqrt{3}\right)}{2}\)
\(=\dfrac{-\left(\sqrt{7}-\sqrt{3}\right)}{1}\cdot\dfrac{2}{\sqrt{7}-\sqrt{3}}\)
=-2
b) Ta có: \(\left(\dfrac{x-\sqrt{x}}{1-\sqrt{x}}-1\right):\left(\sqrt{x}-x\right)+\dfrac{1}{x}\)
\(=\left(-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-1\right)\cdot\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{1}{x}\)
\(=\left(-\sqrt{x}-1\right)\cdot\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{1}{x}\)
\(=\dfrac{x+\sqrt{x}}{x\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}-1}{x\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x+2\sqrt{x}-1}{x\left(\sqrt{x}-1\right)}\)
Giải phương trình 1, \(x^2+9x+7=\left(2x+1\right)\sqrt{2x^2+4x+5}\)
2, GPT \(\left(2x+7\right)\sqrt{2x+7}=x^2+9x+7\)
3. GHPT \(\left\{{}\begin{matrix}x^2-2y-1=2\sqrt{5y+8}+\sqrt{7x-1}\\\left(x-y\right)\left(x^2+xy+y^2+3\right)=3\left(x^2+y^2\right)+2\end{matrix}\right.\)
1.
\(\Leftrightarrow\left(2x+1\right)\sqrt{2x^2+4x+5}-\left(2x+1\right)\left(x+3\right)+x^2-2x-4=0\)
\(\Leftrightarrow\left(2x+1\right)\left(\sqrt{2x^2+4x+5}-\left(x+3\right)\right)+x^2-2x-4=0\)
\(\Leftrightarrow\dfrac{\left(2x+1\right)\left(x^2-2x-4\right)}{\sqrt{2x^2+4x+5}+x+3}+x^2-2x-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\\dfrac{2x+1}{\sqrt{2x^2+4x+5}+x+3}+1=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2x+1+\sqrt{2x^2+4x+5}+x+3=0\)
\(\Leftrightarrow\sqrt{2x^2+4x+5}=-3x-4\) \(\left(x\le-\dfrac{4}{3}\right)\)
\(\Leftrightarrow2x^2+4x+5=9x^2+24x+16\)
\(\Leftrightarrow7x^2+20x+11=0\)
2.
ĐKXĐ: ...
\(\Leftrightarrow2x\sqrt{2x+7}+7\sqrt{2x+7}=x^2+2x+7+7x\)
\(\Leftrightarrow\left(x^2-2x\sqrt{2x+7}+2x+7\right)+7\left(x-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)^2+7\left(x-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)\left(x+7-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2x+7}\\x+7=\sqrt{2x+7}\end{matrix}\right.\)
\(\Leftrightarrow...\)
3.
ĐKXĐ: ...
Từ pt dưới:
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+3x-3y=3x^2+3y^2+1+1\)
\(\Leftrightarrow x^3-y^3+3x-3y=3x^2+3y^2+1+1\)
\(\Leftrightarrow x^3-3x^2+3x-1=y^3+3y^2+3y+1\)
\(\Leftrightarrow\left(x-1\right)^3=\left(y+1\right)^3\)
\(\Leftrightarrow y=x-2\)
Thế vào pt trên:
\(x^2-2x+3=2\sqrt{5x-2}+\sqrt{7x-1}\)
\(\Leftrightarrow x^2-5x+2+2\left(x-\sqrt{5x-2}\right)+\left(x+1-\sqrt{7x-1}\right)=0\)
\(\Leftrightarrow x^2-5x+2+\dfrac{2\left(x^2-5x+2\right)}{x+\sqrt{5x-2}}+\dfrac{x^2-5x+2}{x+1+\sqrt{7x-1}}=0\)
\(\Leftrightarrow x^2-5x+2=0\)
\(P=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\frac{\left(1-x\right)^2}{2}\)
\(P=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right)\frac{\left(1-x\right)^2}{2}\)
\(P=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(x-1\right)\left(\sqrt{x}+1\right)}\right)\frac{\left(x-1\right)^2}{2}\)
\(P=\left(\frac{\left(x-\sqrt{x}-2\right)-\left(x+\sqrt{x}-2\right)}{\left(x-1\right)\left(\sqrt{x}+1\right)}\right)\frac{\left(x-1\right)^2}{2}\)
\(P=\frac{2\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}+1\right)}\frac{\left(x-1\right)^2}{2}\)
\(P=\frac{\sqrt{x}\left(x-1\right)}{\sqrt{x}+1}=\sqrt{x}\left(\sqrt{x}-1\right)=x-\sqrt{x}\)
Rút gọn biểu thức:
1) \(\sqrt{\left(1-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}+3\right)^2}\)
2) \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)
3) \(\left(\sqrt{19}-3\right)\left(\sqrt{19}+3\right)\)
4) \(4x+\sqrt{\left(x-12\right)^2}\left(x\ge2\right)\)
5) \(\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}\)
6) \(x+2y-\sqrt{\left(x^2-4xy+4y^2\right)^2}\left(x\ge2y\right)\)
Xét dấu tam thức bậc hai:
\(D\left(x\right)=\dfrac{11x+3}{-x^2+5x-4}\)
\(E\left(x\right)=\left(\left(x^2+\sqrt{3}-1\right)x-\sqrt{3}\right).\left(\left(x^2-\sqrt{7}-1\right)x+\sqrt{3}\right)\)
\(=\frac{x+1}{2\left(x-1\right)}+\frac{2}{2\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\)
=\(\frac{\left(x+1\right).\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{2\sqrt{x}\left(\sqrt{x}+1\right)}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\)
=\(\frac{x\sqrt{x}+\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{2x-2\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{2x+2\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\)
=\(\frac{x\sqrt{x}+4x+\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
=\(\frac{\sqrt{x}\left(x+4\sqrt{x}+1\right)}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
=\(\frac{\sqrt{x}\left(\sqrt{x}+1\right)^2}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
=\(\frac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}\)
LƯU Ý: CAP NÀY CHỈ LÀ CAP NHÁP
\(\left\{\left[\left(2\sqrt{2}\right)^2:2,4\right]X\left[5,25:\left(\sqrt{7}\right)^2\right]\right\}\) : \(\left\{\left[2\dfrac{1}{7}:\dfrac{\left(\sqrt{5}\right)^2}{7}\right]:\left[2^2:\dfrac{\left(2\sqrt{2}\right)^2}{\sqrt{81}}\right]\right\}\)
b, tìm x, y, z thoả mãn đẳng thức
\(\sqrt{\left(x-\sqrt{2}\right)^2}\) + \(\sqrt{\left(y+\sqrt{2}\right)^2}\) + |x + y + z| = 0
\(a,\cdot\left\{\left[\left(2\sqrt{2}\right)^2:2,4\right]\cdot\left[5,25:\left(\sqrt{7}\right)^2\right]\right\}:\left\{\left[2\dfrac{1}{7}:\dfrac{\left(\sqrt{5}\right)^2}{7}\right]:\left[2^2:\dfrac{\left(2\sqrt{2}\right)^2}{\sqrt{81}}\right]\right\}\\ =\left[\left(8:2,4\right)\cdot\left(5,25:7\right)\right]:\left[\left(\dfrac{15}{7}:\dfrac{5}{7}\right):\left(4:\dfrac{8}{9}\right)\right]\\ =\left(\dfrac{10}{3}\cdot\dfrac{3}{4}\right):\left(3:\dfrac{9}{2}\right)\\ =\dfrac{5}{2}:\dfrac{2}{3}\\ =\dfrac{15}{4}\)
a: \(\dfrac{\left\{\left[\left(2\sqrt{2}\right)^2:2,4\right]\cdot\left[5,25:\left(\sqrt{7}^2\right)\right]\right\}}{\left\{\left[2\dfrac{1}{7}:\dfrac{\left(\sqrt{5}\right)^2}{7}\right]:\left[2^2:\dfrac{\left(2\sqrt{2}\right)^2}{\sqrt{81}}\right]\right\}}\)
\(=\dfrac{\dfrac{8}{2,4}\cdot\dfrac{5,25}{7}}{\left(\dfrac{15}{7}:\dfrac{5}{7}\right):\left(4:\dfrac{8}{9}\right)}\)
\(=\dfrac{\dfrac{10}{3}\cdot\dfrac{3}{4}}{3:\left(4\cdot\dfrac{9}{8}\right)}\)
\(=\dfrac{\dfrac{10}{4}}{3:\left(\dfrac{9}{2}\right)}=\dfrac{5}{2}:\left(3\cdot\dfrac{2}{9}\right)=\dfrac{5}{2}:\dfrac{2}{3}=\dfrac{15}{4}\)
b: \(\sqrt{\left(x-\sqrt{2}\right)^2}=\left|x-\sqrt{2}\right|>=0\forall x\)
\(\sqrt{\left(y+\sqrt{2}\right)^2}=\left|y+\sqrt{2}\right|>=0\forall y\)
\(\left|x+y+z\right|>=0\forall x,y,z\)
Do đó: \(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|>=0\forall x,y,z\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-\sqrt{2}=0\\y+\sqrt{2}=0\\x+y+z=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\sqrt{2}\\y=-\sqrt{2}\\z=0\end{matrix}\right.\)
A= \(\dfrac{3}{\sqrt{7}-2}\) + \(\sqrt{\left(\sqrt{7}-3\right)}^2\)
B= \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}}{x-\sqrt{x}}\right)\):\(\left(\dfrac{\sqrt{x}+1}{x-1}\right)\)
Rút gọn A,B