Tìm các số nguyên x sao cho(x3+5)(x3+10)(x3+15)(x3+30)<0
Nêu cả cách làm các bạn nhé
Tìm x ϵ Z để ( x3+5)( x3+10)(x3+15)(x3+30) <0
\(TH_1:x\ge0\Leftrightarrow x^3\ge0\Leftrightarrow VT>0\left(loại\right)\)
\(TH_2:x< 0\)
Với \(x=-1\Leftrightarrow VT=4\cdot9\cdot14\cdot29>0\left(loại\right)\)
Với \(x=-2\Leftrightarrow VT=-3\cdot2\cdot7\cdot23< 0\left(nhận\right)\)
Với \(x=-3\Leftrightarrow VT=-22\left(-17\right)\left(-12\right)\cdot3< 0\left(nhận\right)\)
Với \(x< -4\Leftrightarrow x^3< -64\Leftrightarrow x^3+5< x^3+10< x^3+15< x^3+30< 0\)
Do đó cả 4 thừa số trong tích đều âm nên tích này luôn dương
Vậy \(x\in\left\{-2;-3\right\}\)
Bài 1: Số(−3)20+1(−3)20+1 có phải là tích của hai số nguyên liên tiếp không?
Bài 2: Tìm x∈Zx∈Z biết (x+5)x (3x-12)>0
Bài 3: Tìmx∈Zx∈Z biết (x3+5)(x3+10)(x3+15)(x3+30)<0
Tìm các hằng số a và b sao cho ( x 3 + ax + b) : (x + 1) dư 7 và ( x 3 + ax + b) : (x – 3) dư (-5)
A. a = 10, b = 2
B. a = 10, b = -2
C. a = -10, b = -2
D. a = -10, b = 2
Để x 3 + ax + b chia cho x + 1 dư 7 thì b – a – 1 = 7 ó -a + b = 8 (1)
Để x 3 + ax + b chia cho x – 3 dư -5 thì b + 3a + 27 = -5 ó 3a + b = -32 (2)
Từ (1) và (2) ta có hệ - a + b = 8 3 a + b = - 32 ó a = - 10 b = - 2
Vậy a = -10, b = -2
Đáp án cần chọn là: C
Tìm các sô nguyên x sao cho 12 x = x 3
A. x = -6
B. x = 6
C. x ∈ - 6 ; 6
D. Đáp án khác
Tìm tất cả các giá trị của tham số m sao cho phương trình x 3 - 3 x 2 + ( 2 m - 2 ) x + m - 3 = 0 có ba nghiệm x 1 ; x 2 ; x 3 thỏa mãn x 1 < - 1 < x 2 < x 3 .
A . m > - 5
B . m < - 6
C . m ≤ - 5
D . m < - 5
Cho các số x1,x2,x3 thỏa mãn x1-1/3=x2-2/2=x3-3/1 và x1+x2+x3=30 . Khi đó x1+x2-x2+x3=???
cho các số x1;x2;x3 thỏa mãn: x1 - 1/3 x2-2/2 = x3-3/1 và x1+x2+x3=30 . khi đó x1.x2-x2.x3 = ?
x1 = 13 ; x2 = 10 ; x3 = 7
=> x1.x2-x2.x3=13.10-10.7=130-70=60
1) a) 3xy+2y-4x+8
b) 5xy-3x-11y= -5
c) 4xy+2x+2y=1
2) Tìm các số nguyên x1;x2;x3;...;x7 sao cho (x1)^4+x2)^4+(x3)^+...+(x7)^4=2008
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
Bài 5: Giải các phương trình sau:
a. (3x - 1)2 - (x + 3)2 = 0
b. x3 = \(\dfrac{x}{49}\)
c. x2 - 7x + 12 = 0
d. 4x2 - 3x -1 = 0
e. x3 - 2x - 4 = 0
f. x3 + 8x2 + 17x +10 = 0
g. x3 + 3x2 + 6x + 4 = 0
h. x3 - 11x2 + 30x = 0
a. (3x - 1)2 - (x + 3)2 = 0
\(\Leftrightarrow\left(3x-1+x+3\right)\left(3x-1-x-3\right)=0\)
\(\Leftrightarrow\left(4x+2\right)\left(2x-4\right)=0\)
\(\Leftrightarrow4x+2=0\) hoặc \(2x-4=0\)
1. \(4x+2=0\Leftrightarrow4x=-2\Leftrightarrow x=-\dfrac{1}{2}\)
2. \(2x-4=0\Leftrightarrow2x=4\Leftrightarrow x=2\)
S=\(\left\{-\dfrac{1}{2};2\right\}\)
b. \(x^3=\dfrac{x}{49}\)
\(\Leftrightarrow49x^3=x\)
\(\Leftrightarrow49x^3-x=0\)
\(\Leftrightarrow x\left(49x^2-1\right)=0\)
\(\Leftrightarrow x\left(7x+1\right)\left(7x-1\right)=0\)
\(\Leftrightarrow x=0\) hoặc \(7x+1=0\) hoặc \(7x-1=0\)
1. x=0
2. \(7x+1=0\Leftrightarrow7x=-1\Leftrightarrow x=-\dfrac{1}{7}\)
3. \(7x-1=0\Leftrightarrow7x=1\Leftrightarrow x=\dfrac{1}{7}\)
*Cách khác:
a) Ta có: \(\left(3x-1\right)^2-\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(3x-1\right)^2=\left(x+3\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=-x-3\\3x-1=x+3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=-2\\2x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=2\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{1}{2};2\right\}\)
Bài 2. Cho các đa thức: f(x) = x3 - 2x2 + 3x + 1; g(x) = x3 + x - 1; h(x) = 2x2 - 1
a) Tính f (x) - g(x) + h(x).
b) Tìm x sao cho f (x) - g(x) + h(x) = 0.
Bài 3. Cho các đa thức: f (x) = x3 - 2x + 1; g(x) = 2x2 - x3 + x - 3
a) Tính f (x) + g(x);f(x) - g(x).
b) Tính f (x) + g(x) tại x = -1; x = -2.
Bài 4. Cho đa thức: A = -2xy2 + 3xy + 5xy2 + 5xy + 1.
a) Thu gọn và tìm bậc của đa thức A.
b) Tính giá trị của A tại x = 1
2
; y = -1.
câu 4: b, đề bài là tính giá trị của A tại x =-1/2;y=-1
Tk
Bài 2
a) F(x)-G(x)+H(x)= \(x^3-2x^2+3x+1-\left(x^3+x-1\right)+\left(2x^2-1\right)\)
= \(x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)
= \(x^3-x^3-2x^2+2x^2+3x-x+1+1-1\)
= 2x + 1
b) 2x + 1 = 0
2x = -1
x=\(\dfrac{-1}{2}\)
Tk
Bài 3
a)
f(x) + g(x)
\(x^3-2x+1+\left(2x^2-x^3+x-3\right)\)
\(x^3-2x+1+2x^2-x^3+x-3\)
\(x^3-x^3-2x+x+1-3+2x^2\)
\(-x-2+2x^2\)
f(x) - g(x)
\(x^3-2x+1-\left(2x^2-x^3+x-3\right)\)
\(x^3-2x+1-2x^2+x^3-x+3\)
\(x^3+x^3-2x-x+1+3-2x^2\)
\(2x^3-3x+4-2x^2\)
b)
Thay x = -1, ta có:
\(-\left(-1\right)-2+2\left(-1\right)^2\) = 1
x = -2, ta có
\(2\left(-2\right)^3-3\left(-2\right)+4-2\left(-2\right)^2\)
\(2\cdot\left(-8\right)+6+4-8\) = -14