5x2+14x+9−−−−−√=x2−x−20−−−−−−−−−√+51+x−−−−−√
Bài 2 Phân tích thành nhân tử
a) 3x2 – 7x – 10
b) x2 + 6x +9 – 4y2
c) x2 – 2xy + y2 – 5x + 5y’
d) 4x2 – y2 – 6x + 3y
e) 1 – 2a + 2bc + a2 – b2 – c2
f) x3 – 3x2 – 4x + 12
g) x4 + 64
h) x4 – 5x2 + 4
i) (x+1)(x+3)(x+5)(x+7) + 16
j) (x2 + 6x +8)( x2 + 14x + 48) – 9
k) ( x2 – 8x + 15)(x2 – 16x + 60) – 24x2
l) 4( x2 + 15x + 50)(x2 +18x +72) – 3x2
Bài 3 tìm gtnn
A = 9x2 – 6x + 2
B = 4x2 + 5x + 10
C = x2 – x + 10
D = 4x2 + 3x + 20
E = x2 + y2 – 6xy + 10y + 35
F= x2 + y2 – 6x + 4y +2
M= 2x2 + 4y2 – 4xy – 4x – 4y +2021
Bài 2:
a) \(3x^2-7x-10=\left(x+1\right)\left(3x-10\right)\)
b) \(x^2+6x+9-4y^2=\left(x+3\right)^2-\left(2y\right)^2=\left(x+3-2y\right)\left(x+3+2y\right)\)
c) \(x^2-2xy+y^2-5x+5y=\left(x-y\right)^2-5\left(x-y\right)=\left(x-y\right)\left(x-y-5\right)\)
d) \(4x^2-y^2-6x+3y=\left(2x-y\right)\left(2x+y\right)-3\left(2x-y\right)=\left(2x-y\right)\left(2x+y-3\right)\)
e) \(1-2a+2bc+a^2-b^2-c^2=\left(a-1\right)^2-\left(b-c\right)^2=\left(a-1-b+c\right)\left(a-1+b-c\right)\)
f) \(x^3-3x^2-4x+12=\left(x+2\right)\left(x-3\right)\left(x-2\right)\)
g) \(x^4+64=\left(x^2+8\right)^2-16x^2=\left(x^2+8-4x\right)\left(x^2+6+4x\right)\)h) \(x^4-5x^2+4=\left(x+2\right)\left(x+1\right)\left(x-1\right)\left(x-2\right)\)
i) \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+16=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+16=\left(x^2+8x+7\right)^2+8\left(x^2+8x+7\right)+16=\left(x^2+8x+11\right)^2\)
a: \(3x^2-7x-10\)
\(=3x^2+3x-10x-10\)
\(=\left(x+1\right)\left(3x-10\right)\)
b: \(x^2+6x+9-4y^2\)
\(=\left(x+3\right)^2-4y^2\)
\(=\left(x+3-2y\right)\left(x+3+2y\right)\)
c: \(x^2-2xy+y^2-5x+5y\)
\(=\left(x-y\right)^2-5\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-5\right)\)
a) 3x2−7x−10=(x+1)(3x−10)3x2−7x−10=(x+1)(3x−10)
b) x2+6x+9−4y2=(x+3)2−(2y)2=(x+3−2y)(x+3+2y)x2+6x+9−4y2=(x+3)2−(2y)2=(x+3−2y)(x+3+2y)
c) x2−2xy+y2−5x+5y=(x−y)2−5(x−y)=(x−y)(x−y−5)x2−2xy+y2−5x+5y=(x−y)2−5(x−y)=(x−y)(x−y−5)
d) 4x2−y2−6x+3y=(2x−y)(2x+y)−3(2x−y)=(2x−y)(2x+y−3)4x2−y2−6x+3y=(2x−y)(2x+y)−3(2x−y)=(2x−y)(2x+y−3)
e) 1−2a+2bc+a2−b2−c2=(a−1)2−(b−c)2=(a−1−b+c)(a−1+b−c)1−2a+2bc+a2−b2−c2=(a−1)2−(b−c)2=(a−1−b+c)(a−1+b−c)
f) x3−3x2−4x+12=(x+2)(x−3)(x−2)x3−3x2−4x+12=(x+2)(x−3)(x−2)
g) x4+64=(x2+8)2−16x2=(x2+8−4x)(x2+6+4x)x4+64=(x2+8)2−16x2=(x2+8−4x)(x2+6+4x)h) x4−5x2+4=(x+2)(x+1)(x−1)(x−2)x4−5x2+4=(x+2)(x+1)(x−1)(x−2)
i) (x+1)(x+3)(x+5)(x+7)+16=(x2+8x+7)(x2+8x+15)+16=(x2+8x+7)2+8(x2+8x+7)+16=(x2+8x+11)2(x+1)(x+3)(x+5)(x+7)+16=(x2+8x+7)(x2+8x+15)+16=(x2+8x+7)2+8(x2+8x+7)+16=(x2+8x+11)2
Cho hàm số f x = − 5 x 2 + 14 x − 9 . Tập hợp các giá trị của x để f ' x < 0 là
A. 7 5 ; 9 5 .
B. − ∞ ; 7 5 .
C. 1 ; 7 5 .
D. 7 5 ; + ∞ .
Đáp án A.
f ' x = − 10 x + 14 − 5 x 2 + 14 x − 9 với 1 < x < 9 5 . f ' x < 0 ⇔ − 10 x + 14 0 ⇔ x 14 10 = 7 5 .
Kết hợp với điều kiện thì x ∈ 7 5 ; 9 5 .
Bài 9.Rút gọn biểu thức
a)-5x2+3x.(x+2)
b)-2x.(1-x2)-2x3
c)4x.(x-1)-4(x2+2x-1)
d)6x3-2x2(-x2-3x)
e)3x(x-1)-(1+2x).5x
f)-5x2-(x-6).(-2x2)
Giúp mình với mn
\(a\\ -5x^2+3x.\left(x+2\right)=-5x^2+3x^2+6x=-2x^2+6x\\ b\\ -2x.\left(1-x^2\right)-2x^3=-2x+2x^3-2x^3=-2x\\ c\\ 4x.\left(x-1\right)-4.\left(x^2+2x-1\right)\\ =4x^2-4x-4x^2-8x+4=-12x+4\)
\(d\\ 6x^3-2x^2.\left(-x^2-3x\right)=6x^3+2x^4+6x^3=2x^4+12x^3\\ e\\ 3x.\left(x-1\right)-\left(1+2x\right).5x\\ =3x^2-3x-5x-10x^2=-7x^2-8x\\ f\\ -5x^2-\left(x-6\right).\left(-2x^2\right)=-5x^2+2x^3-12x^2=2x^3-17x^2\)
Tìm GTLN của BT sau
-x2+3x
-5x2-2xy-2y2+14x+10y-1
-8x2-3y2-26x+6y+100
\(-5x^2-2xy-2y^2+14x+10y-1\\ =-\left(x^2+2xy+y^2\right)-\left(4x^2-2\cdot2\cdot\dfrac{7}{2}x+\dfrac{49}{4}\right)-\left(y^2-10y+25\right)+\dfrac{55}{4}\\ =-\left(x+y\right)^2-\left(2x-\dfrac{7}{2}\right)^2-\left(y-5\right)^2+\dfrac{55}{4}\le\dfrac{55}{4}\\ Max\Leftrightarrow\left\{{}\begin{matrix}x=-y\\2x=\dfrac{7}{2}\\y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=\dfrac{7}{4}\\y=5\end{matrix}\right.\Leftrightarrow x,y\in\varnothing\)
Vậy dấu \("="\) ko xảy ra
a: Ta có: \(-x^2+3x\)
\(=-\left(x^2-3x+\dfrac{9}{4}-\dfrac{9}{4}\right)\)
\(=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)
Bài 2: Phân tích đa thức thành nhân tử:
1) 6x3y - 12x2y2 + 6xy3 6) x – x -2
2) (x2 +4)2 -16 7) x4 - 5x2 + 4
3) 5x2 - 5xy - 10x + 10y 8) x2 – x3 - 2x2 - x
4) a3 - 3a + 3b – b3 9) (a3 – 27) – (3 – a)(6a + 9)
5) x2 - 2x – y2 +1 10) x2(y – z) + y2(z – x) + z2(x – y)
\(1,=6xy\left(x^2-2xy+y^2\right)=6xy\left(x-y\right)^2\\ 2,=\left(x^2+4-4\right)\left(x^2+4+4\right)=x^2\left(x^2+8\right)\\ 3,=5x\left(x-y\right)-10\left(x-y\right)=5\left(x-2\right)\left(x-y\right)\\ 4,=\left(a-b\right)\left(a^2+ab+b^2\right)-3\left(a-b\right)=\left(a-b\right)\left(a^2+ab+b^2-3\right)\\ 5,=\left(x-1\right)^2-y^2=\left(x+y-1\right)\left(x-y-1\right)\\ 6,Sửa:x^2-x-2=x^2+x-2x-2=\left(x+1\right)\left(x-2\right)\\ 7,=x^4-4x^2-x^2+4=\left(x^2-4\right)\left(x^2-1\right)\\ =\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\\ 8,=-x^3-x^2-x=-x\left(x^2+x+1\right)\\ 9,=\left(a-3\right)\left(a^2+3a+9\right)+\left(a-3\right)\left(6a+9\right)\\ =\left(a-3\right)\left(a^2+9a+18\right)\\ =\left(a-3\right)\left(a^2+3a+6a+18\right)\\ =\left(a-3\right)\left(a+3\right)\left(a+6\right)\)
\(10,=x^2y-x^2z+y^2z-xy^2+z^2\left(x-y\right)\\ =xy\left(x-y\right)-z\left(x-y\right)\left(x+y\right)+z^2\left(x-y\right)\\ =\left(x-y\right)\left(xy-xz-yz+z^2\right)\\ =\left(x-y\right)\left(x-z\right)\left(y-z\right)\)
Giải hộ e bài này với ai 👍
Câu 1 : a, 4x2 -3x-1=0 / d, 4x4-5x2+1=0
b, x2 - (1+căn 5)x + căn 5= 0 / e,x2 +3=|4x| / f, 2x + 5cănx +3 =0 / g, (x2 +x +1 ).(x2+x+2)=2 / h, x4-5x2+4=0
c, x4 + x2 -20=0 / k, x phần x2-1 -- 1 phần 2(x+1) = 1phan 2
a) \(\dfrac{1}{x}-\dfrac{2}{x+1}=1\)
b) x4+x2-2=0
c) 4x4-5x2-9=0
b) Đặt t = x2 ( t ≥ 0) ta có pt:
t2 - t2 - 2= 0
Δ= (-1)2 - 4.1. (-2)
= 9 > 0
⇒ \(\sqrt{\Delta}=\sqrt{9}=3\)
Vậy pt có 2 no phân biệt
x1= \(\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-1\right)+3}{2.1}=2\)
x2= \(\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-1\right)-3}{2.1}=-1\)
Với t = 2 thì x2= 2 ⇔ x1;2 = \(\pm4\)
Với t = -1 thì x2= -1 ⇔ x3;4 ∈ ∅
Vậy tập nghiệm của pt là: S= \(\left\{\pm4\right\}\)
c) Đặt t = x2 ( t ≥ 0) ta có pt:
4t2 - 5t2 - 9= 0
Δ= (-5)2 - 4.4. (-9)
= 169 > 0
⇒ \(\sqrt{\Delta}\) = \(\sqrt{169}=13\)
Vậy pt có 2 no phân biệt
x1= \(\dfrac{5+13}{2.4}=\dfrac{9}{4}\)
x2= \(\dfrac{5-13}{2.4}=-1\)
Với t = \(\dfrac{9}{4}\) thì x2= \(\dfrac{9}{4}\) ⇔ x1;2 = \(\pm\dfrac{3}{2}\)
Với t = -1 thì x2= -1 ⇔ x3;4 ∈ ∅
Vậy tập nghiệm của pt là: S= \(\left\{\pm\dfrac{3}{2}\right\}\)
a: =>\(\dfrac{x+1-2x}{x\left(x+1\right)}=1\)
=>-x+1=x^2+x
=>x^2+x+x-1=0
=>x^2+2x-1=0
=>\(x=-1\pm\sqrt{2}\)
b: =>x^4+2x^2-x^2-2=0
=>(x^2+2)(x^2-1)=0
=>x^2-1=0
=>x^2=1
=>x=1 hoặc x=-1
c: =>4x^4-9x^2+4x^2-9=0
=>(4x^2-9)(x^2+1)=0
=>4x^2-9=0
=>x=3/2 hoặc x=-3/2
tìm x:
(15x4 +4x3 +11x2 +14x–8):(5x2 +3x–2)
min F biết √x2-6x+9 + √x^2+14x+49
1. (x3 – 3x2 + x – 3) : (x – 3) 2. (2x4 – 5x2 + x3 – 3 – 3x) : (x2 – 3) 3. (x – y – z)5 : (x – y – z)3 4. (x2 + 2x + x2 – 4) : (x + 2) 5. (2x3 + 5x2 – 2x + 3) : (2x2 – x + 1) 6. (2x3 – 5x2 + 6x – 15) : (2x – 5)
1: \(=x^2+1\)
3: \(=\left(x-y-z\right)^2\)