Gọi x 1 , x 2 ( x 1 < x 2 ) là hai nghiệm của phương trình x 2 − 4 x − 5 = 4 x − 17 . Tính giá trị biểu thức P = x 1 2 + x 2
A. P = 16
B. P = 58
C. P = 28
D. P = 22
gọi x1 và x2 là 2 nghiệm phương trình (x2+x)(x2+x+1)=6
khi đó x12+x22=... .
t(t+1)=6
=> t=2;-3
+ x2 +x = 2 => x = 1 ; -2 => S =5
+ x2 + x = -3 => loại
Cho phương trình 1 2 log 2 ( x + 2 ) + x + 3 = log 2 2 x + 1 x + ( 1 + 1 x ) 2 + 2 x + 2 , gọi S là tổng tất cả các nghiệm dương của nó. Khi đó, giá trị của S là.
A. - 2
B. 1 - 13 2
C. 1 + 13 2
D. Đáp án khác
Cho P= \(\dfrac{1-5\sqrt{x}}{\sqrt{x}+1}\)và Q= \((\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{2\sqrt{x}}{\sqrt{x}-2}-\dfrac{3x+4}{x-4}).(\dfrac{\sqrt{x}-2}{2}+1)\)
a) Rút gọn Q
b) Gọi M=P.Q. so sánh M và \(\sqrt{M}\)
a: ĐKXĐ: x>=0; x<>4
\(Q=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)+2\sqrt{x}\left(\sqrt{x}+2\right)-3x-4}{x-4}\cdot\dfrac{\sqrt{x}-2+2}{2}\)
\(=\dfrac{x-2\sqrt{x}+2x+4\sqrt{x}-3x-4}{x-4}\cdot\dfrac{\sqrt{x}}{2}\)
\(=\dfrac{2\sqrt{x}-4}{x-4}\cdot\dfrac{\sqrt{x}}{2}=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)
b: \(M=P\cdot Q=\dfrac{\sqrt{x}}{\sqrt{x}+2}\cdot\dfrac{1-5\sqrt{x}}{\sqrt{x}+1}=\dfrac{\sqrt{x}\left(1-5\sqrt{x}\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}\)
\(M\left(M-1\right)=\dfrac{\sqrt{x}\left(1-5\sqrt{x}\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-5x-x-3\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}\left(1-5\sqrt{x}\right)\left(-6x-2\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)^2\cdot\left(\sqrt{x}+1\right)^2}\)
\(=\dfrac{\sqrt{x}\left(5\sqrt{x}-1\right)\left(6x+2\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}+1\right)^2}\)
TH1: M>=căn M
=>M^2>=M
=>M^2-M>=0
=>5*căn x-1>=0
=>x>=1/25 và x<>4
TH2: M<căn M
=>5căn x-1<0
=>x<1/25
Kết hợp ĐKXĐ, ta được: 0<=x<1/25
gọi x1 va x2 là 2 nghiệm của phương trình \(\left(x^2+x\right)\left(x^2+x+1\right)=6\)
Tính x1^2+x2^2
Đạt x2+x=a
Suy ra a(a+1)=6
Suy ra a2+a-6=0
Suy Ra a2-2a+3a-6=0
Suy ra a(a+2)+3(a+2)=0
Suy ra (a+2)(a+3)=0. suy ra x=2 hoặc x=3
với x=2 thì x2+x=2 suy ra x2+x-2=0 suy ra x2+2x-x-2=0
suy ra x(x+2)-(x+2)=0 suy ra (x+2)(x-1)=0 suy ra x=1 :x=-2
Với x=-3 suy ra x2+x+3=0 suy ra (x2+x+1/4)+11/4=0 suy ra (x+1/2)2+11/4=0(loại)
Vậy X12+X22=12+(-2)2=5
Gọi x1, x2 là hai nghiệm của phương trình, chứng minh rằng biểu thức: M = x1(1 – x2) + x2(1 – x1) là một hằng số.
-cho x,y là hai đại lượng tỉ lệ nghịch. Gọi x1, x2 là hai giá trị của x. Gọi y1,y2 là hai giá trị tương ứng của y. Biết x1=6; x2=-9,y1-y2=10.Tính y1,y2
Lời giải:
Vì $x,y$ là 2 đại lượng tỉ lệ nghịch nên tích $xy=k$ không đổi với $k$ là số thực, hay còn được gọi là hệ số tỉ lệ.
Có:
$x_1y_1=x_2y_2=k$
$\Rightarrow 6y_1=-9y_2$
$\Rightarrow \frac{y_1}{-9}=\frac{y_2}{6}$
Áp dụng TCDTSBN: $\frac{y_1}{-9}=\frac{y_2}{6}=\frac{y_1-y_2}{-9-6}=\frac{10}{-15}=\frac{-2}{3}$
$\Rightarrow y_1=\frac{-2}{3}.(-9)=6; y_2=\frac{-2}{3}.6=-4$
Tập nghiệm của bất pt
a) \(\dfrac{x-2}{x+1}\ge\dfrac{x+1}{x-2}\)
b) Gọi S là nghiệm của bất pt \(\dfrac{x^2+x+3}{x^2-4}\ge1\). Khi đó \(S\cap\left(-2;2\right)\) là tập nào
a, \(\dfrac{x-2}{x+1}\ge\dfrac{x+1}{x-2}\)
⇔ \(\dfrac{\left(x-2\right)^2-\left(x+1\right)^2}{\left(x-1\right)\left(x+2\right)}\ge0\)
⇔ \(\dfrac{3-6x}{\left(x+1\right)\left(x-2\right)}\) ≥ 0
⇔ \(\dfrac{2x-1}{\left(x+1\right)\left(x-2\right)}\) ≤ 0
⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\-1< x< 2\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\\left[{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}\le x< 2\\x< -1\end{matrix}\right.\)
Vậy tập nghiệm là \(\left(-\infty;-1\right)\cup\) \(\left[\dfrac{1}{2};2\right]\)\ {2}
Bạn có thể biến cái ngoặc vuông kia (ở chỗ số 2) thành ngoặc tròn
Còn vì sao mình không biến cái ngoặc vuông kia (ở chỗ số 2) thành ngoặc tròn thì đó là một câu chuyện dài
b, tương tự, chuyển vế đổi dấu
Cho PT: x2 - 2(m+2)x + m +1 = 0
Gọi x1 , x2 là 2 nghiệm của PT. Tìm m để x1(1-2x2) + x2 (1-2x1) = m2
Cho phương trình x2-2(m+1)x+m-4+0. Gọi x1;x2 là hai nghiệm của phương trình. Hãy tính giá trị của M=x1(1-x2)+x2(1-x1)
pt có hai nghiệm \(\Leftrightarrow\) \(\Delta'\)= (m+1)2 - 1.(m-4) \(\ge\) 0
\(\Leftrightarrow\) m2 + m +5 \(\ge\) 0 ( đúng \(\forall\)m\(\in R\))
Áp dụng hệ thức Vi-et ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1.x_2=m-4\end{matrix}\right.\)
M = x1(1-x2) + x2(1-x1) = x1 + x2 - 2x1x2 = 2(m+1) - 2(m-4) =10
Cho phương trình bậc hai x2 - 2(m - 1)x + m - 4 = 0
Gọi x1,x2 là nghiệm của phương trình trên. Chứng minh biểu thức
A = x1(1 - x2) + x2(1 - x1) không phụ thuộc vào m
ta có theo VI-et thì \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-4\end{cases}}\)
Nên \(A=x_1\left(1-x_2\right)+x_2\left(1-x_1\right)=\left(x_1+x_2\right)-2x_1x_2=2\left(m-1\right)-2\left(m-4\right)=6\)khonong phụ thuộc vào m