Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kiều Oanh
Xem chi tiết
Nguyễn Nhật Minh
5 tháng 2 2016 lúc 21:02

t(t+1)=6

=> t=2;-3

+ x2 +x = 2 => x = 1 ; -2 => S =5

+ x2 + x = -3 =>  loại 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 12 2019 lúc 3:15

Minh Bình
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 9 2023 lúc 21:00

a: ĐKXĐ: x>=0; x<>4

\(Q=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)+2\sqrt{x}\left(\sqrt{x}+2\right)-3x-4}{x-4}\cdot\dfrac{\sqrt{x}-2+2}{2}\)

\(=\dfrac{x-2\sqrt{x}+2x+4\sqrt{x}-3x-4}{x-4}\cdot\dfrac{\sqrt{x}}{2}\)

\(=\dfrac{2\sqrt{x}-4}{x-4}\cdot\dfrac{\sqrt{x}}{2}=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)

b: \(M=P\cdot Q=\dfrac{\sqrt{x}}{\sqrt{x}+2}\cdot\dfrac{1-5\sqrt{x}}{\sqrt{x}+1}=\dfrac{\sqrt{x}\left(1-5\sqrt{x}\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}\)

\(M\left(M-1\right)=\dfrac{\sqrt{x}\left(1-5\sqrt{x}\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-5x-x-3\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}\left(1-5\sqrt{x}\right)\left(-6x-2\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)^2\cdot\left(\sqrt{x}+1\right)^2}\)

\(=\dfrac{\sqrt{x}\left(5\sqrt{x}-1\right)\left(6x+2\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}+1\right)^2}\)

TH1: M>=căn M

=>M^2>=M

=>M^2-M>=0

=>5*căn x-1>=0

=>x>=1/25 và x<>4

TH2: M<căn M

=>5căn x-1<0

=>x<1/25

Kết hợp ĐKXĐ, ta được: 0<=x<1/25

Le vi dai
Xem chi tiết
Lê Phương Thảo
22 tháng 1 2016 lúc 21:39

Đạt x2+x=a

Suy ra a(a+1)=6

Suy ra a2+a-6=0

Suy Ra a2-2a+3a-6=0

Suy ra a(a+2)+3(a+2)=0

Suy ra (a+2)(a+3)=0. suy ra x=2 hoặc x=3

với x=2 thì x2+x=2 suy ra x2+x-2=0 suy ra x2+2x-x-2=0

suy ra x(x+2)-(x+2)=0 suy ra (x+2)(x-1)=0 suy ra x=1 :x=-2

Với x=-3 suy ra x2+x+3=0 suy ra (x2+x+1/4)+11/4=0 suy ra (x+1/2)2+11/4=0(loại)

Vậy X12+X22=12+(-2)2=5

nguyen nhat thien
Xem chi tiết
thư Trần
Xem chi tiết
Akai Haruma
20 tháng 1 lúc 22:00

Lời giải:

Vì $x,y$ là 2 đại lượng tỉ lệ nghịch nên tích $xy=k$ không đổi với $k$ là số thực, hay còn được gọi là hệ số tỉ lệ.

Có:

$x_1y_1=x_2y_2=k$

$\Rightarrow 6y_1=-9y_2$

$\Rightarrow \frac{y_1}{-9}=\frac{y_2}{6}$

Áp dụng TCDTSBN: $\frac{y_1}{-9}=\frac{y_2}{6}=\frac{y_1-y_2}{-9-6}=\frac{10}{-15}=\frac{-2}{3}$

$\Rightarrow y_1=\frac{-2}{3}.(-9)=6; y_2=\frac{-2}{3}.6=-4$

Kimian Hajan Ruventaren
Xem chi tiết
Ngô Thành Chung
16 tháng 2 2021 lúc 20:41

a, \(\dfrac{x-2}{x+1}\ge\dfrac{x+1}{x-2}\) 

⇔ \(\dfrac{\left(x-2\right)^2-\left(x+1\right)^2}{\left(x-1\right)\left(x+2\right)}\ge0\)

⇔ \(\dfrac{3-6x}{\left(x+1\right)\left(x-2\right)}\) ≥ 0

⇔ \(\dfrac{2x-1}{\left(x+1\right)\left(x-2\right)}\) ≤ 0

⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\-1< x< 2\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\\left[{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}\le x< 2\\x< -1\end{matrix}\right.\)

Vậy tập nghiệm là \(\left(-\infty;-1\right)\cup\) \(\left[\dfrac{1}{2};2\right]\)\ {2}

Bạn có thể biến cái ngoặc vuông kia (ở chỗ số 2) thành ngoặc tròn

Còn vì sao mình không biến cái ngoặc vuông kia (ở chỗ số 2) thành ngoặc tròn thì đó là một câu chuyện dài

b, tương tự, chuyển vế đổi dấu 

 

 

Nguyễn Thị Hoàng Oanh
Xem chi tiết
Kiều Chí Công
Xem chi tiết
Vũ Minh Chi
30 tháng 4 2017 lúc 9:55

pt có hai nghiệm \(\Leftrightarrow\) \(\Delta'\)= (m+1)2 - 1.(m-4) \(\ge\) 0

\(\Leftrightarrow\) m2 + m +5 \(\ge\) 0 ( đúng \(\forall\)m\(\in R\))

Áp dụng hệ thức Vi-et ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1.x_2=m-4\end{matrix}\right.\)

M = x1(1-x2) + x2(1-x1) = x1 + x2 - 2x1x2 = 2(m+1) - 2(m-4) =10

Lan Hà
Xem chi tiết
Nguyễn Minh Quang
26 tháng 2 2021 lúc 23:05

ta có theo VI-et thì \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-4\end{cases}}\)

Nên \(A=x_1\left(1-x_2\right)+x_2\left(1-x_1\right)=\left(x_1+x_2\right)-2x_1x_2=2\left(m-1\right)-2\left(m-4\right)=6\)khonong phụ thuộc vào m

Khách vãng lai đã xóa