xác định m để x^2 - 2mx + m+ 2=0 có nghiệm duy nhất
Bài 1: Giải và biện luận phương trình sau theo tham số m:
a) (m - 2)x2 - 2mx + m +1 = 0
b) (m - 3)x2 - 2mx + m - 6 = 0
Bài 2: Cho phương trình: (m2 - 4)x2 +2(m + 2)x + 1 = 0, với tham số m:
a) Tìm m để phương trình có nghiệm x
b) Tìm m để phương trình có nghiệm duy nhất
Bài 3: Tìm m để phương trình sau có nghiệm duy nhất. Tìm nghiệm duy nhất đó:
(m - 2)x2 - 2mx + 2m - 3 = 0
Bài 1: Giải và biện luận phương trình sau theo tham số m:
a) (m - 2)x2 - 2mx + m +1 = 0
b) (m - 3)x2 - 2mx + m - 6 = 0
Bài 2: Cho phương trình: (m2 - 4)x2 +2(m + 2)x + 1 = 0, với tham số m:
a) Tìm m để phương trình có nghiệm x
b) Tìm m để phương trình có nghiệm duy nhất
Bài 3: Tìm m để phương trình sau có nghiệm duy nhất. Tìm nghiệm duy nhất đó:
(m - 2)x2 - 2mx + 2m - 3 = 0
cho `x^2-2mx+m^2 -3m+9=0` (m tham số). Xác định `m` để pt có nghiệm
Pt có nghiệm khi:
\(\Delta'=m^2-\left(m^2-3m+9\right)\ge0\)
\(\Leftrightarrow3m-9\ge0\)
\(\Rightarrow m\ge3\)
tìm m để pt có nghiệm duy nhất
\(\dfrac{x}{\sqrt{x^2-2mx+m^2-3m+2}}=\sqrt{x^2-2mx+m^2-3m+2}\)
ĐKXĐ: \(x^2-2mx+m^2-3m+2>0\)
\(\dfrac{x}{\sqrt{x^2-2mx+m^2-3m+2}}=\sqrt{x^2-2mx+m^2-3m+2}\)
- Với \(x< 0\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP>0\end{matrix}\right.\) pt vô nghiệm
- Với \(x\ge0\)
\(\Rightarrow x=x^2-2mx+m^2-3m+2=0\)
\(\Rightarrow x^2-\left(2m+1\right)x+m^2-3m+2=0\) (1)
+ Với \(m^2-3m+2=0\Rightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)
\(m=1\Rightarrow x^2-3x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) có 2 nghiệm (ktm)
\(m=2\Rightarrow x^2-5x=0\Rightarrow x=\left\{0;5\right\}\) ktm
+ Với \(m^2-3m+2\ne0\)
\(\Rightarrow\) pt đã cho có nghiệm duy nhất khi \(\left(1\right)\) có đúng 1 nghiệm dương
\(\Rightarrow x_1x_2=m^2-3m+2< 0\)
\(\Rightarrow1< m< 2\)
Cho Phương Trình: \(x^2\)-2mx-m=0 (1). Xác định m để phương trình (1) có 2 nghiệm \(_{x_1}\),\(x_2\) thỏa mãn : \(x^2_1\)+2m\(x_2\)+19(m+1)=0
Ptr có nghiệm `<=>\Delta' >= 0`
`<=>(-m)^2-(-m) >= 0`
`<=>m(m+1) >= 0`
`<=>` $\left[\begin{matrix} m \le -1\\ m \ge 0\end{matrix}\right.$
`=>` Áp dụng Viét có:`{(x_1+x_2=[-b]/a=2m),(x_1.x_2=c/a=-m):}`
Ta có:`x_1 ^2+2mx_2+19(m+1)=0`
`<=>x_1 ^2+(x_1+x_2)x_2+19(m+1)=0`
`<=>x_1 ^2+x_1.x_2+x_2 ^2+19(m+1)=0`
`<=>(x_1+x_2)^2-x_1.x_2+19(m+1)=0`
`<=>(2m)^2-(-m)+19m+19=0`
`<=>4m^2+10m+19=0`
Ptr có:`\Delta'=5^2-4.19=-51 < 0`
`=>` Ptr vô nghiệm
Vậy ko có gtr `m` t/m yêu cầu đề bài
Xác định giá trị của m để phương trình:
a) \(2x^2+2mx+m^2-2=0\) có 2 nghiệm cùng dấu
b) \(x^2+2\left(m+7\right)+m^2-4=0\) có hai nghiệm trái dấu
c) \(x^2-2\left(m+7\right)+m^2-4=0\) có hai nghiệm âm phân biệt
a: \(\Delta=\left(2m\right)^2-4\cdot2\cdot\left(m^2-2\right)\)
\(=4m^2-8m^2+16\)
\(=-4m^2+16\)
Để phương trình có hai nghiệm cùng dấu thì \(\left\{{}\begin{matrix}-4m^2+16>=0\\\dfrac{m^2-2}{2}>=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2< =m< =2\\\left[{}\begin{matrix}m>=\sqrt{2}\\m< =-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-2< =m< =-\sqrt{2}\\\sqrt{2}< =m< =2\end{matrix}\right.\)
b: Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0
hay -2<m<2
c: \(\Delta=\left(2m+14\right)^2-4\left(m^2-4\right)\)
\(=4m^2+56m+196-4m^2+16\)
=56m+212
Để phương trình có hai nghiệm âm phân biệt thì \(\left\{{}\begin{matrix}56m+212>0\\2\left(m+7\right)< 0\\\left(m-2\right)\left(m+2\right)>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{53}{14}< m< -7\\\left(m-2\right)\left(m+2\right)>0\end{matrix}\right.\)
=>\(m\in\varnothing\)
Tìm m để phương trình
x2 - 2mx + (m + 1)|x - m| + 1 = 0 (1) có nghiệm duy nhất
Phương trình <=> (x - m)2 + (m + 1)|x - m| + 1 - m2 = 0
Đặt X = |x - m| \(\ge\)0 , ta có :
X2 + (m + 1).X + 1 - m2 = 0 (2)
Với một nghiệm X > 0 ta có hai nghiệm x = \(\pm x+m\)
Với X = 0 , ta có x = m
Vậy (1) có nghiệm duy nhất <=> (2) có nghiệm
X1 \(\le\)X2 = 0 \(\Leftrightarrow\hept{\begin{cases}P=0\\S\le0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}1-m^2=0\\-m-1\le0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m=\pm1\\m\ge-1\end{cases}}\)
\(\Leftrightarrow m=\pm1\)
cho pt bậc hai ẩn x : \(2x^2+2mx+m^2-2=0\)
a) xác định m để pt có 2 nghiệm.
b) gọi x1,x2 là nghiệm của pt trên tìm giá trị lớn nhất của biểu thức: A=\(\left|2x_1x_2+x_1+x_2-4\right|\)
a, Phương trình có hai nghiệm khi
\(\Delta'=m^2-2\left(m^2-2\right)=-m^2+4\ge0\Leftrightarrow-2\le m\le2\)
b, Theo định lí Viet \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=\dfrac{m^2-2}{2}\end{matrix}\right.\)
\(A=\left|2x_1x_2+x_1+x_2-4\right|\)
\(=\left|m^2-2-m-4\right|\)
\(=\left|\left(m-\dfrac{1}{2}\right)^2-\dfrac{25}{4}\right|\)
\(=\left|-\left(m-\dfrac{1}{2}\right)^2+\dfrac{25}{4}\right|\le\dfrac{25}{4}\)
\(maxA=\dfrac{25}{4}\Leftrightarrow m=\dfrac{1}{2}\)
Bài 3: Tìm m để phương trình sau có nghiệm duy nhất. Tìm nghiệm duy nhất đó:
(m - 2)x2 - 2mx + 2m - 3 = 0