a: \(\Delta=\left(2m\right)^2-4\cdot2\cdot\left(m^2-2\right)\)
\(=4m^2-8m^2+16\)
\(=-4m^2+16\)
Để phương trình có hai nghiệm cùng dấu thì \(\left\{{}\begin{matrix}-4m^2+16>=0\\\dfrac{m^2-2}{2}>=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2< =m< =2\\\left[{}\begin{matrix}m>=\sqrt{2}\\m< =-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-2< =m< =-\sqrt{2}\\\sqrt{2}< =m< =2\end{matrix}\right.\)
b: Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0
hay -2<m<2
c: \(\Delta=\left(2m+14\right)^2-4\left(m^2-4\right)\)
\(=4m^2+56m+196-4m^2+16\)
=56m+212
Để phương trình có hai nghiệm âm phân biệt thì \(\left\{{}\begin{matrix}56m+212>0\\2\left(m+7\right)< 0\\\left(m-2\right)\left(m+2\right)>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{53}{14}< m< -7\\\left(m-2\right)\left(m+2\right)>0\end{matrix}\right.\)
=>\(m\in\varnothing\)