cho p là số nguyên tố lớn hơn 3 và p+2 là số nguyên tố
chứng minh p+1 chia hết cho 6
Bài 1: Cho số nguyên tố p lớn hơn 5 thỏa mãn p + 14 và p2 + 6 cũng là số nguyên tố. Chứng minh rằng p + 11 chia hết cho 10.
Bài 2: Cho số nguyên tố p lớn hơn 3 thỏa mãn 2p + 1 cũng là số nguyên tố. Chứng minh rằng p + 1 chia hết cho 6.
Bài 3: Cho các số nguyên tố p thỏa mãn 8p - 1 cũng là số nguyên tố. Chứng minh rằng 8p + 1 cũng là hợp số.
Bài 4: Tổng của 3 số nguyên tố bằng 1012. Tìm số nhỏ nhất trong 3 số nguyên tố đó.
mình chỉ biết bài 4 thôi
Bài 4: Vì tổng bằng 1012 nên trong 3 số nguyên tố đó thì phải có 1 số nguyên tố là số chẵn. Nên số chẵn đó là 2 đồng thời là số nhỏ nhất. Vậy số 2 là số nguyên tố nhỏ nhất trong 3 số nguyên tố đó
1)cho ba số nguyên tố lớn hơn 3 trong đó số sau lớn hơn số trước là d dơn vị chứng minh rằng d chia hết cho 6
2)hai số nguyên tố gọi là sinh đôi nếu chúng là hai số nguyên tố lẻ lien tiếp chứng minh rằng một số tự nhiên lớn hơn 3 nằm giữa hai số nguyên tố sinh đôi thì chia hết cho 6
3)cho p là số nguyên tố lớn hơn 3 biết p+2 cũng là số nguyên tố chứng minh rằng p+1 chia hết cho 6
1)cho ba số nguyên tố lớn hơn 3 trong đó số sau lớn hơn số trước là d dơn vị chứng minh rằng d chia hết cho 6
2)hai số nguyên tố gọi là sinh đôi nếu chúng là hai số nguyên tố lẻ lien tiếp chứng minh rằng một số tự nhiên lớn hơn 3 nằm giữa hai số nguyên tố sinh đôi thì chia hết cho 6
3)cho p là số nguyên tố lớn hơn 3 biết p+2 cũng là số nguyên tố chứng minh rằng p+1 chia hết cho 6
3) CM:p+1 chia hết cho 2
vì p lớn hơn 3 suy ra p là số lẻ và p+1 là số chẵn.
Vậy p+1 chia hết cho 2
CM:p+1 chia hết cho 3
Ta có:p x (p+1) x (p+2) chia hết cho 3(vì tích 3 số liên tiếp luôn chia hết cho 3)
Mà p và p+2 là số nguyên tố nên p và p+2 ko chia hết cho 3
Vậy p+1 chia hết cho 3
Mà ƯCLN(2,3) là 1
Vậy p+1 chia hết cho 2x3 là 6
Vậy p+1 chia hết cho 6 với mọi p lớn hơn 3 và p+2 cùng là số nguyên tố.
Cho p là số nguyên tố lớn hơn 3 và p + 2 là số nguyên tố. Chứng minh p + 1 chia hết cho 6
Một số nguyên tố > 3 thì sẽ có dạng 3k + 1 hoặc 3k + 2
Với p= 3k + 1 suy ra p + 2 = 3k + 1 + 2 = 3k + 3 chia hết cho 3 là hợp số
Vậy : p=3k + 2 .Ta có : p + 1 = 3k + 2 + 1 = 3k + 3 chia hết cho 3 ( 1 )
Vì : p là SNT > 3 suy ra PLA số lẻ , suy ra p + 1 là số chẵn ( số lẽ + số lẽ = số chẵn )suy ra p+1 chia hết cho 2 ( 2 )
Từ ( 1 ) và ( 2 ) suy ra p + 1 chia hết cho 6 ( một số chia hết hết cho 2 và 3 , chia hết cho 6 )
khó quá chtt nhé Khuất Tuấn Anh
Cho p là số nguyên tố lớn hơn 3 và p+2 cũng là số nguyên tố. Chứng minh rằng p+1 chia hết cho 6
Ta có: p và p + 2 là số nguyên tố lớn hơn 3 nên p + p + 2 = 2p + 2 chia hết cho 2
p là số nguyên tố lớn hơn 2 nên:
p = 3k ( loại vì 3k là hợp số có ước là 3 và k )p = 3k + 1 ( loại vì số nguyên tố lớn hơn 3 là số lẻ => 3k + 1 là số chẵn )p = 3k + 2 ( chọn )=> 2p + 2 = 6k + 4 + 2 = 6k + 6 chia hết cho 3
2p + 2 chia hết cho 2 và 3 => 2p + 2 chia hết cho 6
=>\(\frac{\left(2p+2\right).1}{2}\) = p + 1 chia hết cho 6
Cho p là số nguyên tố lớn hơn 3 và p+2 cũng là số nguyên tố Chứng minh rằng p+1 chia hết cho 6
(p+1) chia hết cho 6 => (p+1) chia hết cho cả 2 và 3 (vì 2 và 3 nguyên tố cùng nhau)
p là số nguyên tố => p là số lẻ => p+1 là số chẵn nên chia hết cho 2
p;p+1;p+2 là 3 số tự nhiên liên tiếp nên phải có 1 số chia hết cho 3 mà p và p+2 là 2 số nguyên tố nên ko chia đc cho 3 => p+1 chia hết cho 3
Cho p là số nguyên tố lớn hơn 3 và p+2 nguyên tố. Chứng minh rằng p+1 chia hết cho 6
bài 1: cho p là số nguyên tố lớn hơn 3. Biết p+2 cũng là số nguyên tố . Chứng minh p+1 cũng chia hết cho 6
bài 2 : cho p và p+4 là số nguyên tố ( p>3) . Chứng minh rằng p+8 là hợp số
1. Tìm số nguyên tố p , sao cho các số sau cũng là số nguyên tố :
a,p+2 và p+10
b,p+10 và p+20
2.Cho 3 số nguyên tố lớn hơn 3 , trong đó số sau lớn hơn số trước là d đơn vị . Chứng minh rằng d chia hết cho 6.
3.Cho p và p+4 là các số nguyên tố (p>3) . Chứng minh ằng p+8 là hợp số
4.Cho p và 8p-1 là các số nguyên tố . Chứng minh rằng 8p+1 là hợp số
Câu 1:
a: p=3 thì 3+2=5 và 3+10=13(nhận)
p=3k+1 thì p+2=3k+3(loại)
p=3k+2 thì p+10=3k+12(loại)
b: p=3 thì p+10=13 và p+20=23(nhận)
p=3k+1 thì p+20=3k+21(loại)
p=3k+2 thì p+10=3k+12(loại)
2.
p là số nguyên tố > 3 => p lẻ p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2 +) Xét p = 3k + 1 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2. (3m +1) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố Nếu d chia cho3 dư 2 => d = 3m + 2 => p +d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố => d chia hết cho 3 +) Xét p = 3k + 2 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không là số ngt Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d = 3k + 6m + 6 => p + 2d không là số ngt => d chia hết cho 3 Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6