2\(\sqrt{1-\frac{2}{x}}\)+\(\sqrt{2x-\frac{8}{x}}\)≥x
giải pt
a) \(3\sqrt{x}+\frac{3}{2\sqrt{x}}=2x+\frac{1}{2x}-7\)
b) \(5\sqrt{x}+\frac{5}{2\sqrt{x}}=2x+\frac{1}{2x}+4\)
c) \(\sqrt{2x^2+8x+5}+\sqrt{2x^2-4x+5}=6\sqrt{x}\)
d) \(x+1+\sqrt{x^2-4x+1}=3\sqrt{x}\)
e) \(x^2+2x\sqrt{x-\frac{1}{x}}=3x+1\)
f) \(x^2-6x+x\sqrt{\frac{x^2-6}{x}}-6=0\)
g) \(\frac{3x^2}{3+\sqrt{x}}+6+2\sqrt{x}=5x\)
h) \(\frac{x^2}{4-3\sqrt{x}}+8=3\left(x+2\sqrt{x}\right)\)
a/ ĐKXĐ: ...
\(\Leftrightarrow3\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)-7\)
Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=a>0\Rightarrow a^2=x+\frac{1}{4x}+1\)
\(\Rightarrow x+\frac{1}{4x}=a^2-1\)
Pt trở thành:
\(3a=2\left(a^2-1\right)-7\)
\(\Leftrightarrow2a^2-3a-9=9\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}=3\)
\(\Leftrightarrow2x-6\sqrt{x}+1=0\)
\(\Rightarrow\sqrt{x}=\frac{3+\sqrt{7}}{2}\Rightarrow x=\frac{8+3\sqrt{7}}{2}\)
b/ ĐKXĐ:
\(\Leftrightarrow5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)+4\)
Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=a>0\Rightarrow x+\frac{1}{4x}=a^2-1\)
\(\Rightarrow5a=2\left(a^2-1\right)+4\Leftrightarrow2a^2-5a+2=0\)
\(\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x}+\frac{1}{2\sqrt{x}}=2\\\sqrt{x}+\frac{1}{2\sqrt{x}}=\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x-4\sqrt{x}+1=0\\2x-\sqrt{x}+1=0\left(vn\right)\end{matrix}\right.\)
c/ ĐKXĐ: ...
\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)
\(\Leftrightarrow\frac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\frac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)
\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\frac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\frac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)
\(\Leftrightarrow2x^2-8x+5=0\)
d/ ĐKXĐ: ...
\(\Leftrightarrow x+1-\frac{15}{6}\sqrt{x}+\sqrt{x^2-4x+1}-\frac{1}{2}\sqrt{x}=0\)
\(\Leftrightarrow\frac{x^2-\frac{17}{4}x+1}{\left(x+1\right)^2+\frac{15}{6}\sqrt{x}}+\frac{x^2-\frac{17}{4}x+1}{\sqrt{x^2-4x+1}+\frac{1}{2}\sqrt{x}}=0\)
\(\Leftrightarrow\left(x^2-\frac{17}{4}x+1\right)\left(\frac{1}{\left(x+1\right)^2+\frac{15}{6}\sqrt{x}}+\frac{1}{\sqrt{x^2-4x+1}+\frac{1}{2}\sqrt{x}}\right)=0\)
\(\Leftrightarrow x^2-\frac{17}{4}x+1=0\)
\(\Leftrightarrow4x^2-17x+4=0\)
e/ ĐKXĐ: ...
\(\Leftrightarrow x^2-1+2x\sqrt{\frac{x^2-1}{x}}=3x\)
Nhận thấy \(x=0\) không phải nghiệm, pt tương đương:
\(\frac{x^2-1}{x}+2\sqrt{\frac{x^2-1}{x}}=3\)
Đặt \(\sqrt{\frac{x^2-1}{x}}=a\ge0\)
\(a^2+2a=3\Leftrightarrow a^2+2a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-3\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{\frac{x^2-1}{x}}=1\Leftrightarrow x^2-1=x\Leftrightarrow x^2-x-1=0\)
f/ ĐKXĐ: ...
\(\Leftrightarrow x^2-6+x\sqrt{\frac{x^2-6}{x}}-6x=0\)
Nhận thấy \(x=0\) ko phải nghiệm, pt tương đương:
\(\frac{x^2-6}{x}+\sqrt{\frac{x^2-6}{x}}-6=0\)
Đặt \(\sqrt{\frac{x^2-6}{x}}=a\ge0\)
\(a^2+a-6=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-3\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{\frac{x^2-6}{x}}=2\Leftrightarrow x^2-4x-6=0\)
P=\(\left(\frac{\sqrt{x}+1}{\sqrt{2x}+1}+\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\right):\left(1+\frac{\sqrt{x}+1}{\sqrt{2x}+1}-\frac{\sqrt{2x}-\sqrt{x}}{\sqrt{2x}-1}\right)\)
=\(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{2x}-1\right)}{\left(\sqrt{2x}+1\right)\left(\sqrt{2x}-1\right)}+\frac{\left(\sqrt{2x}+\sqrt{x}\right)\left(\sqrt{2x}+1\right)}{MTC}-\frac{2x-1}{MTC}\)
=\(\frac{x\sqrt{2}-\sqrt{x}+\sqrt{2x}-1+2x+\sqrt{2x}+x\sqrt{2}+\sqrt{x}-2x+1}{MTC}\)
=\(\frac{2x\sqrt{2}+2\sqrt{2x}}{MTC}\)
P=\(\left(\frac{2\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right).\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
rút gọn P
tính P khi x =\(8+2\sqrt{10}\)
Giả sứ nếu x là số lớn nhất trong 3 chữ số. Ta sẽ lấy x, y để so sánh tạm nhé...
Từ đề bài ta có;
\(\sqrt{x+2011}+\sqrt{y+2012}+\sqrt{z+2013}=\sqrt{z+2011}+\sqrt{x+2012}+\)
\(\sqrt{y+2013}\)
\(\Leftrightarrow\sqrt{x+2012}-\sqrt{x+2011}+\sqrt{y+2013}-\sqrt{y+2012}=\sqrt{z+2012}-\)
\(\sqrt{z+2011}+\sqrt{z+2013}-\sqrt{z-2012}\)
\(\Leftrightarrow\frac{1}{\sqrt{x+2012}+\sqrt{x+2011}}+\frac{1}{\sqrt{x+2013}+\sqrt{x+2012}}=\)
\(\frac{1}{\sqrt{z+2012}+\sqrt{z+2011}}+\frac{1}{\sqrt{z+2013}+\sqrt{z+2012}}\)
Ta lại có
\(\frac{1}{\sqrt{x+2012}+\sqrt{x+2011}}\ge\frac{1}{\sqrt{z+2012}+\sqrt{z+2011}}\)
\(\frac{1}{\sqrt{y+2013}+\sqrt{y+2012}}\ge\frac{1}{\sqrt{z+2013}+\sqrt{z+2012}}\)
P/s; Mình ko chắc đâu nhé
1, \(\frac{x}{2}-\frac{3-x}{3}=\frac{2x+2}{5}\)
2,1-\(\frac{3-x}{3}=\frac{2x+2}{5}-\frac{2-x}{4}\)
3,\(\frac{2}{3}x+1=x-5\)
4, 2x-x2 =0
5,\(\frac{4x}{x+1}+\frac{x+3}{x}=6\)
6, \(\frac{x-1}{x-3}+\frac{2x+2}{x-2}=8\)
7, \(\sqrt{x-1}=\sqrt{2}\)
8, \(\sqrt{2x-1}=\sqrt{x}-4\)
a)Giải các phương trình sau bằng phương pháp đặt ẩn phụ:
1) \(x^2-3x-3=\frac{3\left(\sqrt[3]{x^3-4x^2+4}-1\right)}{1-x}\) ;2)\(1+\frac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)
b) Giải các phương trình sau(không giới hạn phương pháp):
1)\(2\left(1-x\right)\sqrt{x^2+2x-1}=x^2-2x-1\) ; 2)\(\sqrt{2x+4}-2\sqrt{2-x}=\frac{12x-8}{\sqrt{9x^2+16}}\)
3)\(\frac{3x^2+3x-1}{3x+1}=\sqrt{x^2+2x-1}\) ; 4) \(\frac{2x^3+3x^2+11x-8}{3x^2+4x+1}=\sqrt{\frac{10x-8}{x+1}}\)
5)\(13x-17+4\sqrt{x+1}=6\sqrt{x-2}\left(1+2\sqrt{x+1}\right)\);
6)\(x^2+8x+2\left(x+1\right)\sqrt{x+6}=6\sqrt{x+1}\left(\sqrt{x+6}+1\right)+9\)
7)\(x^2+9x+2+4\left(x+1\right)\sqrt{x+4}=\frac{5}{2}\sqrt{x+1}\left(2+\sqrt{x+4}\right)\)
8)\(8x^2-26x-2+5\sqrt{2x^4+5x^3+2x^2+7}\)
À do nãy máy lag sr :) Chứ bài đặt ẩn phụ mệt lắm :)
giải phương trình
a) \(\sqrt{2x-2\sqrt{2x-1}}-2\sqrt{2x+3-4\sqrt{2x-1}}+3\sqrt{2x+8-\sqrt{2x-1}}=4\)
b) \(4x^2+3x+3=4x\sqrt{x+3}+2\sqrt{2x-1}\)
c) \(\sqrt{x-4}+\sqrt{6-x}=x^2-11x+27\)
d) \(\sqrt{13x^2-6x+10}+\sqrt{5x^2-13x+\frac{17}{2}}+\sqrt{17x^2-48x+36}=\frac{1}{2}\left(36x-8x^2-21\right)\)
e) \(\sqrt{\frac{6}{3-x}}+\sqrt{\frac{8}{2-x}}=6\)
\(\frac{2x-1}{MTC}+\frac{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{MTC}-\frac{\left(\sqrt{2x}+\sqrt{x}\left(\sqrt{2x}+1\right)\right)}{MTC}\)
=\(\frac{2x-1+x\sqrt{2}-\sqrt{x}+\sqrt{2x}-1-2x-\sqrt{2x}-x\sqrt{2}-\sqrt{x}}{MTC}\)
=\(\frac{-2\sqrt{x}-2}{\left(\sqrt{2x}-1\right)\left(\sqrt{2x+1}\right)}\)
Bài 1: Tìm điều kiện để các phân thức sau có nghĩa
a)\(\frac{x-1}{x+1}b)\frac{2x+1}{-3x+5}c)\frac{3x-1}{x^2-4}d)\frac{x-1}{x^2+4}e)\frac{x-1}{\left(x-2\right)\left(x+3\right)}g)\frac{x-1}{x+2}:\frac{x}{x+1}\)
Bài 2 :Tìm điều kiện để các căn thức sau có nghĩa:\(1)\sqrt{3x}|2)\sqrt{-x}|3)\sqrt{3x+2}|4)\sqrt{5-2x}|5)\sqrt{x^2}|6)\sqrt{-4x^2}|7)\sqrt{x-3}+\sqrt{2x+2}|8)\sqrt{\frac{-3}{x+2}}|9)\frac{3}{2x-4}\)
16. Tính a.A= \(\frac{\sqrt{2-\sqrt{4x-x^2}}}{x-2}\) (x>2; \(\sqrt{x}+\sqrt{4+x}=a\); a là hằng số)
b.B=\(\frac{\sqrt{6+2\sqrt{9-4x^2}}}{x}\)( IxI\(\le\)\(\frac{3}{2}\); \(x\ne0;\sqrt{3+2x}-\sqrt{3-2x}=a\); a là hằng số)
c. \(C=x^2+\sqrt{x^4+x+1}\left(x=\frac{1}{2}.\sqrt{\sqrt{2}+\frac{1}{8}}-\frac{\sqrt{2}}{8}\right)\)