Tìm số tiếp tuyến tại điểm nằm trên đồ thị hàm số y = x + 2 x + 1 cắt 2 trục tọa độ tạo thành một tam giác cân.
A. 0
B. 1
C. 2
D. 4
a) tìm hệ số góc của tiếp tuyến của đồ thị hàm số y=-x^3+3x-2 (c) tại điểm có hoành độ -3
b) viết phương trình tiếp tuyến của đồ thị hàm số (c) trên tại điểm ( ứng với tiếp điểm ) có hoành độ -3
Gọi M là giao điểm của đồ thị hàm số y = x + 1 x − 2 với trục hoành. Phương trình tiếp tuyến với đồ thị hàm số trên tại điểm M là:
A. 3 y + x + 1 = 0
B. 3 y + x − 1 = 0
C. 3 y − x + 1 = 0
D. 3 y − x − 1 = 0
Gọi M là giao điểm của đồ thị hàm số y = x + 1 x − 2 với trục hoành. Phương trình tiếp tuyến với đồ thị hàm số trên tại điểm M là
A. 3 y + x + 1 = 0
B. 3 y + x − 1 = 0
C. 3 y − x + 1 = 0
D. 3 y − x − 1 = 0
Đáp án A
Điều kiện: x ≠ 2. Do M là giao điểm của đồ thị hàm số y = x + 1 x − 2 với trục hoành nên M − 1 ; 0
Ta có y ' = − 3 x − 2 2 nên hệ số góc của tiếp tuyến tại M là k = y ' − 1 = − 1 3
Do đó suy ra phương trình tiếp tuyến là y = − 1 3 x − 1 3 x + 3 y + 1
Cho hàm số y= f(x) có đạo hàm liên tục trên R, thỏa mãn 2 f ( 2 x ) + f ( 1 - 2 x ) = 12 x 3 . Tìm phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại điểm có hoành độ x = 1
A.
B.
C.
D.
Cho hàm số y=f(x) có đạo hàm liên tục trên ℝ, thỏa mãn 2 f 2 x + f 1 - 2 x = 12 x 2 . Tìm phương trình tiếp tuyến của đồ thị hàm số y=f(x) tại điểm có hoành độ x=1
A. y=2x+2
B. y=4x-6
C. y=2x-6
D. y=4x-2
Đề bài
Cho hàm số \(y = - 2{x^2} + x\) có đồ thị (C).
a) Xác định hệ số góc của tiếp tuyến của đồ thị (C) tại điểm có hoành độ bằng 2
b) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm M(2; - 6)
a, Hệ số góc của tiếp tuyến của đồ thị là:
\(y'\left(2\right)=-4\cdot2+1=-7\)
b, Phương trình tiếp tuyến của đồ thị (C) tại điểm M(2;-6) là:
\(y=y'\left(2\right)\cdot\left(x-2\right)-6=-7\left(x-2\right)-6=-7x+8\)
Cho hàm số y = f(x) có đạo hàm trên R và đồ thị (C). Tiếp tuyến của đồ thị (C) tại điểm (2;m) có phương trình là y = 4 x - 6 . Tiếp tuyến của các đồ thị hàm số y = f f x và y = f 3 x 2 - 10 tại điểm có hoành độ bằng 2 có phương trình lần lượt là y = a x + b v à y = c x + d . Tính giá trị của biểu thức S = 4 a + 3 c - 2 b + d
A. S = -26
B. S = 176
C. S = 178
D. S = 174
Tiếp tuyến của đồ thị hàm số y = - x + 1 3 x - 2 tại giao điểm của đồ thị hàm số với trục tung có hệ số góc là:
A. -1
B. 1/4
C. -5/4
D. -1/4
Tiếp tuyến của đồ thị hàm số y = − x + 1 3 x − 2 tại giao điểm của đồ thị hàm số với trục tung có hệ số góc là:
A. .-1
B. 1 4
C. − 5 4
D. − 1 4
Chọn D.
Phương pháp
Hệ số góc của tiếp tuyến của đồ thị hàm số y = f(x)
Do đó hệ số góc của tiếp tuyến tại tại giao điểm của đồ thị hàm số với trục tung là y ' 0 = − 1 4 .