S = 2 + 22 + 23 + ...+ 299
chúng minh S ⋮ 5 và S ⋮10
S = 2 + 22 + 23 + ...+ 299
chúng minh S ⋮ 5 và S ⋮10
\(S=2+2^2+2^3+...+2^{99}\)
\(=\left(2+2^2+2^3+2^4\right)+...+2^{95}\left(2+2^2+2^3+2^4\right)\)
\(=30\left(1+...+2^{95}\right)⋮10\)
Cho s=5/20+5/21+5/22+5/23+...+5/49.chứng minh rằng: 3 < s < 8
S=5/20+5/21+5/22+5/23+5/24 HÃY CHỨNG MINH S>1
Ta có: \(\frac{5}{20}>\frac{5}{25}\)
\(\frac{5}{21}>\frac{5}{25}\)
\(\frac{5}{22}>\frac{5}{25}\)
\(\frac{5}{23}>\frac{5}{25}\)
\(\frac{5}{24}>\frac{5}{25}\)
=> \(S>\frac{5}{25}+\frac{5}{25}+\frac{5}{25}+\frac{5}{25}+\frac{5}{25}=5\cdot\frac{5}{25}=\frac{25}{25}=1\)
Vậy S > 1
Ta có :
\(\frac{5}{20}>\frac{5}{25}\)
\(\frac{5}{21}>\frac{5}{25}\)
\(\frac{5}{22}>\frac{5}{25}\)
\(\frac{5}{23}>\frac{5}{25}\)
\(\frac{5}{24}>\frac{5}{25}\)
\(\Rightarrow S>\frac{5}{25}+\frac{5}{25}+\frac{5}{25}+\frac{5}{25}+\frac{5}{25}=5\cdot\frac{5}{25}=\frac{25}{25}=1\)
Vậy \(S>1\)
Cho S =5/20+5/21+5/22+5/23+..........+5/49. Chứng minh rằng 3<S<8
\(S=5.\left(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{49}\right)\)
Xét \(A=\frac{1}{20}+\frac{1}{21}+...+\frac{1}{49}\). Chứng minh 3/5 < A < 8/5
+ Có: \(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{29}\frac{3}{5}\Rightarrow S>3\) (2)
Từ (1)(2) => 3 < S < 8
Này Trần Thị Loan à, tớ thấy cậu nên
thay chữ "xét" ở chỗ "xét A" thành chữ"đặt"
nghe hợp lý hơn.
đáng lẽ ra 1/30+1/31 + ... + 1/34 < 1/30 + 1/30 + ... + 1/30 = 5/30 = 1/6
SAI RỒI
RỨA MÀ CHO ĐÚNG
Cho S =5/20+5/21+5/22+5/23+..........+5/49. Chứng minh rằng 3<S<8
Choa S=1+2+22+23+24+25+26+27
CHỨNG MINH S CHIA HẾT CHO 3
s=[1+2]+[2+2 mũ 2]+...+[2 mũ 6+2 mũ 7]
s=1 nhân [1+2]+2 nhân [1+2]+...+2 mũ 6 nhân [1+2]
s=[1+2] nhân[1+2+...+2 mũ 6
s=3 nhân [1+2+...+2 mũ 6]
=> s chia hết cho 3
cho S=2+22+23+...+223+224
a,chứng minh rằng S chia hết cho 3
b,tìm chữ số tận cùng của S
cho S=2+22+23+...+223+224
a,chứng minh rằng S chia hết cho 3
b,tìm chữ số tận cùng của S
Lời giải:
$S=(2+2^2)+(2^3+2^4)+....+(2^{23}+2^{24})$
$=2(1+2)+2^3(1+2)+....+2^{23}(1+2)$
$=(1+2)(2+2^3+...+2^{23})$
$=3(2+2^3+...+2^{23})\vdots 3$
b.
$S=2+2^2+2^3+...+2^{23}+2^{24}$
$2S=2^2+2^3+2^4+....+2^{24}+2^{25}$
$\Rightarrow 2S-S=2^{25}-2$
$\Rightarrow S=2^{25}-2$
Ta có:
$2^{10}=1024=10k+4$
$\Rightarrow 2^{25}-2=2^5.2^{20}-2=32(10k+4)^2-2=32(100k^2+80k+16)-2$
$=10(320k^2+8k+51)\vdots 10$
$\Rightarrow S$ tận cùng là $0$
S=1+2+22+23+...+29. So sánh S với 5. 28
\(S=1+2+2^2+...+2^9\)
\(S=\dfrac{2^{9+1}-1}{2-1}\)
\(S=2^{10}-1=1023\)
\(5.2^8=5.256=1280>1023\)
\(\Rightarrow S< 5.2^8\)