Tìm m để hàm số y=\(\frac{2020mx}{\sqrt{x-m+2}-1}\) xác định trên (0;1)
Tìm m để hàm số \(y=\sqrt{x-m}+\frac{1}{\sqrt{2m-3-x}}\) xác định trên khoảng (0, 1 )
1. Cho y=\(\dfrac{\sqrt{3x-5m+6}}{x+m-1}\) . Tìm m để hàm số xác định trên (0;m)
y= \(\dfrac{mx}{\sqrt{x-m+2}+1}\)
a, Tìm tập xác định của hàm số theo tham số m
b, Tìm m để hàm số có tập xác định trên (0;1)
1, Cho hàm số y=\(\sqrt{x-2m+1}\) .Tìm m để hàm số xác định trên (2 ;+∞)
Tìm m để hàm số y = \(\frac{x-2m}{(x+m-2)(x+m+1)}\) xác định trên [-1;1)
Tìm tất cả các giá trị thực của tham số m để hàm số \(y=\frac{mx}{\sqrt{x-m+2}-1}\)xác định trên (0;1)
Tìm giá trị của tham số m để:
Hàm số \(y=\sqrt{x-m+1}+\frac{2x}{\sqrt{-x+2m}}\) xác định trên (-1;3)
Cho hàm số y=\(\dfrac{2x+m}{\sqrt{x-2m-1}-3}\)
Tìm m để hàm số xác định trên khoảng (0;+vô cùng). trình bày cách làm rõ nhá
100% group làm sai
Cho hàm số y = (3 – m)x2a) Tìm điều kiện của m để hàm số trên được xác định.b) Xác định m để hàm số đồng biến với mọi x < 0.c) Xác định m để y = 0 là giá trị nhỏ nhất của hàm số tại x = 0.
a, ĐKXĐ để hàm được xác định : \(3-m\ne0\)
\(\Leftrightarrow m\ne3\)
b, - Với x < 0 để hàm số đồng biến thì : \(3-m< 0\)
\(\Leftrightarrow m>3\)
Vậy ...
c, - Để y = 0 là giá trị nhỏ nhất của hàm số tại x = 0
\(\Leftrightarrow a>0\)
\(\Leftrightarrow3-m>0\)
\(\Leftrightarrow m< 3\)
Vậy ...
a) Để hàm số \(y=\left(3-m\right)x^2\) được xác định thì \(3-m\ne0\)
hay \(m\ne3\)
b) Để hàm số \(y=\left(3-m\right)x^2\) đồng biến với mọi x<0 thì \(3-m< 0\)
\(\Leftrightarrow m>3\)
c) Để y=0 là giá trị nhỏ nhất của hàm số tại x=0 thì 3-m>0
hay m<3
Tìm giá trị của tham số m để hàm số \(y=\dfrac{1}{\sqrt{x^2-2x-m}}\) xác định trên [2; 3]
Hàm xác định trên \(\left[2;3\right]\) khi và chỉ khi:
\(x^2-2x-m>0;\forall x\in\left[2;3\right]\)
\(\Rightarrow x^2-2x>m;\forall x\in\left[2;3\right]\)
\(\Rightarrow m< \min\limits_{\left[2;3\right]}\left(x^2-2x\right)\)
Xét hàm \(f\left(x\right)=x^2-2x\) trên \(\left[2;3\right]\)
\(-\dfrac{b}{2a}=1\notin\left[2;3\right]\)
\(f\left(2\right)=0\) ; \(f\left(3\right)=3\)
\(\Rightarrow\min\limits_{\left[2;3\right]}\left(x^2-2x\right)=0\)
\(\Rightarrow m< 0\)