Cho hàm số \(y=\dfrac{\sqrt{m+1}}{3x^2-2x+m}\)
Tìm m để hàm số xác định trên toàn bộ trục số.
1, Cho hàm số y=\(\sqrt{x-2m+1}\) .Tìm m để hàm số xác định trên (2 ;+∞)
1. Cho y=\(\sqrt{2x-m}\) . Tìm m để hàm số xác định trên [2;+∞)
Tìm m để hàm số y = \(\frac{x-2m}{(x+m-2)(x+m+1)}\) xác định trên [-1;1)
Xác định m để hàm số \(y=\sqrt{2-x}+\sqrt{2x+m}\) có tập xác định có độ dài là 1
1. Tìm hàm số xác định của các hàm số sau.
a) \(y=\dfrac{x}{x^2-3x+2}\)
b)\(y=\dfrac{x-1}{2x^2-5x+2}\)
c)\(y=\dfrac{x-1}{x^3+1}\)
d) \(y=\dfrac{1}{x^4+2x^2-3}\)
e) \(y=\sqrt{x+3-2\sqrt{x+2}}\)
Bài 9: Cho hàm số \(y=\dfrac{2mx+4}{\sqrt{x^2+2mx+2018m+2019}}+\sqrt{mx^2+2mx+2020}\). Gọi S là tập hợp các giá trị nguyên của m để hàm số xác định trên R. Hỏi tập S có bao nhiêu phần tử?
Bải 1: Tìm tập xác định của các hàm số
sau:
a)
3x-2
2x+1
c) y=\sqrt{2x+1}-\sqrt{3-x}
b) y=
²+2x-3
d) y=
√2x+1
X
f(x)
Chú ý: * Hàm số cho dạng v
thi f(x) * 0.
ở Hàm số cho dạng y = v/(x) thì f(r) 2 0.
X
* Hàm số cho dạng " J7(p) thi f(x)>0.
Cho hàm số :
y = √(4 - x2) +1/√(x+m).Tìm giá trị của m để hàm số xác định với mọi x thuộc [ 0;1]