Chứng minh rằng: \(x^{10}-10x+9⋮\left(x-1\right)^2\)
Chứng minh rằng: \(x^{10}-10x+9⋮\left(x-1\right)^2\)
Chứng minh:
a) \(\left(x^{50}+x^{10}+1\right)⋮\left(x^{20}+x^{10}+1\right)\)
b) \(\left(x^{10}-10x+9\right)⋮\left(x^2+1\right)\)
c) \(\left(x+1\right)^{4n+2}+\left(x-1\right)^{4n+2}⋮\left(x^2+1\right)\)
Đặt \(A=x^{20}+x^{10}+1\)
\(x^{50}+x^{10}+1\)
\(=x^{50}-x^{20}+A\)
\(=x^{20}\left(x^{30}-1\right)+A\)
\(=x^{20}\left(x^{10}-1\right)A+A\)
\(=\left(x^{30}-x^{20}+1\right)A\)
mà \(\left(x^{30}-x^{20}+1\right)A⋮A\)
\(\Rightarrow\left(x^{50}+x^{10}+1\right)⋮\left(x^{20}+x^{10}+1\right)\)
Chứng minh:
a,\(x^{10}-10x+9⋮\left(x-1\right)^2\)
b,\(x^{50}+x^{10}+1⋮x^{20}+x^{10}+1\)
chứng minh các BĐT sau:a)\(x^4-6x^3+10x^2-6x+9\ge0\) b)\(x^4-10x^3+26x^2-10x+30\ge5\)c)\(\left(x+2\right)\left(x-1\right)\left(x+3\right)\left(x+6\right)-2020\ge-2046\)
Chứng minh rằng:
a. \(x^{10}-10x+9\)chia hết cho \(x^2-2x+1\)
b. \(\left(x+1\right)^{4n+2}+\left(x-1\right)^{4n-2}\)chia hết cho \(x^2+1\)
c. \(\left(x+1\right)^{2n}-x^{2n}-2x-1\)chia hết cho \(x\left(x+1\right)\left(2x+1\right)\)
Bạn nào giải nhanh đúng mình tick cho nha ^ ^.
Chứng minh rằng:
x10 - 10x + 9 chia hết cho (x-1)2
(x^10-10x+9) chia cho (x^2-2x+1)
=> (x^10-10x+9) = (x^2-2x+1)*(x^8 + 2x^7 + 3x^6 + 4x^5 + 5x^4 + 6x^3 + 7x^2 + 8x + 9)
Vậy : (x^10-10x+9) chia hết cho (x^2-2x+1)
Chứng minh: \(\frac{2}{x^2-1}+\frac{4}{x^2-4}+...+\frac{20}{x^2-100}=\frac{11}{\left(x-10\right)\left(x+1\right)}+\frac{11}{\left(x-9\right)\left(x+2\right)}+...+\frac{11}{\left(x-1\right)\left(x+10\right)}\)
Vê trái:
\(=\frac{2}{\left(x-1\right)\left(x+1\right)}+\frac{4}{\left(x-2\right)\left(x+2\right)}+...+\frac{20}{\left(x-10\right)\left(x+10\right)}\)
\(=\frac{\left(x+1\right)-\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{\left(x+2\right)-\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+...+\frac{\left(x+10\right)-\left(x-10\right)}{\left(x+10\right)\left(x-10\right)}\)
\(=\frac{1}{x-1}-\frac{1}{x+1}+\frac{1}{x-2}-\frac{1}{x+2}+...+\frac{1}{x-10}-\frac{1}{x+10}\)
\(=\left(\frac{1}{x-1}+\frac{1}{x-2}+...+\frac{1}{x-10}\right)-\left(\frac{1}{x+1}+\frac{1}{x+2}+...+\frac{1}{x+10}\right)\)
Vế phải:
\(=\frac{\left(x+1\right)-\left(x-10\right)}{\left(x-10\right)\left(x+1\right)}+\frac{\left(x+2\right)-\left(x-9\right)}{\left(x-9\right)\left(x+2\right)}+...+\frac{\left(x+10\right)-\left(x-1\right)}{\left(x-1\right)\left(x+10\right)}\)
\(=\frac{1}{x-10}-\frac{1}{x+1}+\frac{1}{x-9}-\frac{1}{x+2}+...+\frac{1}{x-1}-\frac{1}{x+10}\)
\(=\left(\frac{1}{x-1}+\frac{1}{x-2}+...+\frac{1}{x-10}\right)-\left(\frac{1}{x+1}+\frac{1}{x+2}+...+\frac{1}{x+10}\right)\) = vế phải
=> đpcm
Bài 1 : Tính giá trị của biểu thức
A = \(6xy\left(xy-y^2\right)-8x^2\left(x-y^2\right)+5y^2\left(x^2-xy\right)\) . Tại x = \(\frac{1}{2}\) và y = 2
Q(x) = \(x^{14}-10x^{13}+10x^{12}-10x^{11}+........+10x^2+10x+10\) tại x= 9
14 Chứng minh rằng \(\left(x^2+x-1\right)^{10}+\left(x^2-x+1\right)^{10}+1\) chia hết cho \(x^2-1\)