Chứng minh:
a) \(\left(x^{50}+x^{10}+1\right)⋮\left(x^{20}+x^{10}+1\right)\)
b) \(\left(x^{10}-10x+9\right)⋮\left(x^2+1\right)\)
c) \(\left(x+1\right)^{4n+2}+\left(x-1\right)^{4n+2}⋮\left(x^2+1\right)\)
Chứng minh rằng: \(x^{10}-10x+9⋮\left(x-1\right)^2\)
Chứng minh rằng: \(x^{10}-10x+9⋮\left(x-1\right)^2\)
Bài 1 : Tính giá trị của biểu thức
A = \(6xy\left(xy-y^2\right)-8x^2\left(x-y^2\right)+5y^2\left(x^2-xy\right)\) . Tại x = \(\frac{1}{2}\) và y = 2
Q(x) = \(x^{14}-10x^{13}+10x^{12}-10x^{11}+........+10x^2+10x+10\) tại x= 9
Chứng minh rằng: \(x^{50}+x^{10}+1⋮x^{20}+x^{10}+1\)
Chứng minh rằng: \(x^{50}+x^{10}+1⋮x^{20}+x^{10}+1\)
14 Chứng minh rằng \(\left(x^2+x-1\right)^{10}+\left(x^2-x+1\right)^{10}+1\) chia hết cho \(x^2-1\)
Chứng minh biểu thức sau không phụ thuộc vào giá trị của biến :
\(A=x.\left(5x-3\right)-x^2.\left(x-1\right)+x.\left(x^2-6x\right)-10+3x+x.\left(x^2+x+1\right)-x^2.\left(x+1\right)-x+5\)
\(B=3.\left(2x-1\right)-5.\left(x-3\right)+6.\left(3x-4\right)-19x+x.\left(3x+12\right)-\left(7x-20\right)+x^2.\left(2x-3\right)-x.\left(2x^2+5\right)\)
Bài 1 : Tính
\(a,A=1^2-2^2+3^2-4^2+...-2004^2+2005^2\)
\(b,B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(c,R\left(x\right)=x^4-17x^3+17x^2-17x+20\) với x=16
\(d,S\left(x\right)=x^{10}-13x^9+13x^8-13x^7+...+13x^2-13x+10\) với x=12