Bài 1 : Tính
\(a,A=1^2-2^2+3^2-4^2+...-2004^2+2005^2\)
\(b,B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(c,R\left(x\right)=x^4-17x^3+17x^2-17x+20\) với x=16
\(d,S\left(x\right)=x^{10}-13x^9+13x^8-13x^7+...+13x^2-13x+10\) với x=12
a)
$A=(1^2-2^2)+(3^2-4^2)+....+(2003^2-2004^2)+2005^2$
$=(1-2)(1+2)+(3-4)(3+4)+....+(2003-2004)(2003+2004)+2005^2$
$=-(1+2)-(3+4)-...-(2003+2004)+2005^2$
$=-(1+2+3+...+2004)+2005^2=-\frac{2004.2005}{2}+2005^2$
$=2005^2-1002.2005=2005(2005-1002)=2011015$
b)
$B=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)-2^{64}$
$=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)-2^{64}$
$=(2^4-1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)-2^{64}$
$=(2^8-1)(2^8+1)(2^{16}+1)(2^{32}+1)-2^{64}$
$=(2^{16}-1)(2^{16}+1)(2^{32}+1)-2^{64}$
$=(2^{32}-1)(2^{32}+1)-2^{64}$
$=2^{64}-1-2^{64}=-1$
c) Do $x=16$ nên $x-16=0$
$R(x)=x^4-17x^3+17x^2-17x+20$
$=(x^4-16x^3)-(x^3-16x^2)+x^2-16x-x+20$
$=x^3(x-16)-x^2(x-16)+x(x-16)-x+20$
$=x^3.0-x^2.0+x.0-x+20=-x+20=-16+20=4$
d) Do $x=12$ nên $x-12=0$. Khi đó:
$S(x)=(x^{10}-12x^9)-(x^9-12x^8)+(x^8-12x^7)-....+(x^2-12x)-x+10$
$=x^9(x-12)-x^8(x-12)+x^7(x-12)-....+x(x-12)-x+10$
$=(x-12)(x^9-x^8+x^7-....+x)-x+10$
$=0-x+10=-x+10=-12+10=-2$