Tính
a) ( x -3)( 5x2 - 3x + 2)
b) ( 2a - b)( 4a2 + 2ab + b2)
cho a,b và c thỏa mãn 2a+b+c=-1
hãy tính giá trị biểu thức:P=4a2+b2+c2+4ab+4ac+2ab
Lời giải:
$P=4a^2+b^2+c^2+4ab+4ac+2bc=(2a+b+c)^2=(-1)^2=1$
cho 4a2 +b2 =5ab và 2a>b>0 . tính P = ab/4a2-b2
=>4a^2-5ab+b^2=0
=>(a-b)(4a-b)=0
=>a=b hoặc b=4a(loại)
=>P=b^2/3b^2=1/3
Cho 4a2 + b2 = 5ab và 2a > b > 0. Tính giá trị của biểu thức: M = ab 4a 2 − b 2
A. 1 9
B. 1 3
C. 3
D. 9
BT1 Làm Tính Nhân
a) (-4x+2).(x-5)
b) (x-3).(x+3)
c) (x+3.(x2-3x+9)
d) (2x-1).(-x-3)
e) (2a+1).(4a2-2a+1)
f) (-x-1).(x+2).(x-3)
a: \(=-4x^2+20x+2x-10=-4x^2+22x-10\)
b: =x^2-9
c: =x^3+27
d: \(=-2x^2-6x+x+3=-2x^2-5x+3\)
e: =8a^3+1
f: =(3-x)(x+1)(x+2)
=(3-x)(x^2+3x+2)
=3x^2+9x+6-x^3-3x^2-2x
=-x^3+7x+6
Cho 4a2 + b2 = 5ab với b > 2a > 0. Tính giá trị của biểu thức 5ab / 3a^2+2b^2
Ta có:
\(4a^2+b^2=5ab\Leftrightarrow4a^2+b^2-4ab-ab=0\)
\(\Leftrightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(4a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a-b=0\\4a-b=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=b\left(ktm\right)\\4a=b\left(tm\right)\end{matrix}\right.\)
\(\Rightarrow4a=b\)
\(\Rightarrow\dfrac{5ab}{3a^2+2b^2}=\dfrac{5a.4a}{3a^2+2.\left(4a\right)^2}=\dfrac{20a^2}{3a^2+32a^2}\)
\(=\dfrac{20a^2}{35a^2}=\dfrac{4}{7}\)
\(4a^2+b^2=5ab\)
\(\Rightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)
\(\Rightarrow\left(a-b\right)\left(4a-b\right)=0\)
\(\Rightarrow b=4a\left(do.a\ne b\right)\)
\(\dfrac{5ab}{3a^2+2b^2}=\dfrac{20a^2}{3a^2+32a^2}=\dfrac{4}{7}\)
Bài 2: Phân tích đa thức thành nhân tử
a) x2−xy+5y−25
b) xy−y2−3x+3y
c) x2(x−3)−4x+12
d) 2a(x+y)−x−y
e) 2x−4+5x2−10x
g) 10ax−5ay−2x+y
h) a2−2a+1−b2
a) x2-xy+5y-25
= x(2-y)+ 5(y-2)
= x(2-y)-5(2-y)
= (x-5)(2-y)
h: \(=\left(a-1-b\right)\left(a-1+b\right)\)
bài 1 phân tích các đa thức sau thành nhân tử
a) x2 + 4x +3 b) 16x - 5x2 - 3 c) 2x2 + 7x + 5
d) 2x2 + 3x -5 e) x3 - 3x2 + 1 - 3x f ) x2 - 4x - 5
g) (a2 + 1 )2 - 4a2 h) x3 - 3x2 - 4x + 12 i) x4 + x3 + x + 1
k) x4 - x3 - x2 + 1 l ) (2x + 1 )2 - ( x - 1 )
\(a,=\left(x+1\right)\left(x+3\right)\\ b,=-5x^2+15x+x-3=\left(x-3\right)\left(1-5x\right)\\ c,=2x^2+2x+5x+5=\left(2x+5\right)\left(x+1\right)\\ d,=2x^2-2x+5x-5=\left(x-1\right)\left(2x+5\right)\\ e,=x^3+x^2-4x^2-4x+x+1=\left(x+1\right)\left(x^2-4x+1\right)\\ f,=x^2+x-5x-5=\left(x+1\right)\left(x-5\right)\)
Question Expandand simplify: 1. 8(x+5)-3(2x+7)
2. a(2b+c)+b(3c-2a)
3. 2y(y+5x)+x(3x+4y)
answer , 1. 8(x+5)-3(2x+7)=8x+40-6x+21=2x+61
2. a(2b+c)+b(3c-2a)=2ab+ac+3bc-2ab=ac+3bc=3abc^(2)
3. 2y(y+5x)+x(3x+4y)=2y^(2)+10xy+9x^(2)+4xy=9x^(2)+2y^(2)+14xy
a Explain what he has done wrong.
b work out the correct answer
cho 2 số a,b thỏa 2a+b=2. Tìm GTNN của biểu thức:
P= 3a2 +2ab + b2
\(2a+b=2\Rightarrow b=2-2a\)
\(\Rightarrow P=3a^2+b\left(2a+b\right)=3a^2+2b=3a^2+2\left(2-2a\right)=3a^2-4a+4=3\left(a-\dfrac{2}{3}\right)^2+\dfrac{8}{3}\ge\dfrac{8}{3}\)
\(p_{min}=\dfrac{8}{3}\) khi \(a=\dfrac{2}{3}\)
Địa chỉ ô được viết như sau?
A. A2+B2 B. 2A + 2B C. 2,A + 2,B D. 2AB + 2 BA