\(2a+b=2\Rightarrow b=2-2a\)
\(\Rightarrow P=3a^2+b\left(2a+b\right)=3a^2+2b=3a^2+2\left(2-2a\right)=3a^2-4a+4=3\left(a-\dfrac{2}{3}\right)^2+\dfrac{8}{3}\ge\dfrac{8}{3}\)
\(p_{min}=\dfrac{8}{3}\) khi \(a=\dfrac{2}{3}\)
\(2a+b=2\Rightarrow b=2-2a\)
\(\Rightarrow P=3a^2+b\left(2a+b\right)=3a^2+2b=3a^2+2\left(2-2a\right)=3a^2-4a+4=3\left(a-\dfrac{2}{3}\right)^2+\dfrac{8}{3}\ge\dfrac{8}{3}\)
\(p_{min}=\dfrac{8}{3}\) khi \(a=\dfrac{2}{3}\)
Cho a và b liên hệ với nhau bởi hệ thức: a2 + 2ab + 7(a+b) + 2b2 +10
Tìm GTLN, GTNN
Cho 2 số thực dương x, y thỏa mãn 4/x2 + 5/y2 >= 9
Tìm GTNN của biểu thức Q = 2x2 + 6/x2 + 3y2 + 8/y2
Cho hai biểu thức :
\(A=\dfrac{5}{2m+1}\) và \(B=\dfrac{4}{2m-1}\)
Hãy tìm các giá trị của \(m\) để hai biểu thức ấy có giá trị thỏa mãn hệ thức :
a) \(2A+3B=0\)
b) \(AB=A+B\)
a, Chứng minh rằng với mọi x,y > 0 ta có: \(\frac{2}{x^2+2y^2+3}\) ≤ \(\frac{1}{xy+y+1}\)
b, Cho 3 số dương a,b,c với abc = 1. Tìm giá trị lớn nhất của biểu thức: P = \(\frac{1}{a^2+2b^2+3}\) + \(\frac{1}{b^2+2c^2+3}\) + \(\frac{1}{c^2+2a^2+3}\)
Tìm GTLN và GTNN của biểu thức:
\(P=2x^2-xy-y^2\) với x,y thỏa mãn :\(x^2+2xy+3y^2=4\)
BT1
a ) Cho a > 2 và b>2 chứng minh ab>a+b
b) cho x>= 0, y >= 0, z>= 0 . Chứng minh ( x+y ) (y+z ) ( z+x )
c ) Cho a và là các số bất kì .Chứng tỏ a2+b2 chia 2 >= ab
Cho phương trình: 3(a-2)x+2a(x-1)=4a+3 (1).a) Giải phương trình (1) với a=-2 .b) Tìm a để phương trình (1) có nghiệm x = l.
Tìm GTLN của biểu thức
a) \(\frac{3}{x^2+1}\) b) \(\frac{3x^2+6x+8}{x^2+2x+2}\)
Tìm GTNN của biểu thức
a) \(\frac{-3}{x^2+1}\) b) \(\frac{x^2+3x-1}{x^2}\)
c) \(\frac{x^4+3x^2+3}{x^2+1}\) ( Cô - si )
Cho ba số a,b,c thỏa mãn điều kiện abc=2013. Tính giá trị biểu thức :
\(P=\dfrac{2013a^2bc}{ab+2013a+2013}+\dfrac{ab^2c}{bc+b+2013}+\dfrac{abc^2}{ac+c+1}\)