Phân tích đa thức sau thành nhân tử :
a2 + b2 + 2ab + 2a + 2b + 1
3x(x- 2y)- 6y(2y - x)
x2 + 2x -3
Phân tích các đa thức sau thành nhân tử:
a) x2 - 9 - x2 (x2 - 9) d) x2 + 5x + 6 h) a2 + b2 + 2a – 2b – 2ab
b) x2(x-y) + y2(y-x) e) 3x2 – 4x – 4 i) (x + 1)2 – 2(x + 1)(y – 3) + (y – 3)2
c) x3+27+(x+3)(x-9) g) x4 + 64y4 k) x2(x + 1) – 2x(x + 1) + x + 1
Mình đang cần gấp ạ
a: \(x^2-9-x^2\left(x^2-9\right)\)
\(=\left(x^2-9\right)-x^2\left(x^2-9\right)\)
\(=\left(x^2-9\right)\left(1-x^2\right)\)
\(=\left(1-x\right)\left(1+x\right)\left(x-3\right)\left(x+3\right)\)
b: \(x^2\left(x-y\right)+y^2\left(y-x\right)\)
\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2-y^2\right)\)
\(=\left(x-y\right)\left(x-y\right)\left(x+y\right)=\left(x-y\right)^2\cdot\left(x+y\right)\)
c: \(x^3+27+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9+x-9\right)\)
\(=\left(x+3\right)\left(x^2-2x\right)=x\left(x-2\right)\left(x+3\right)\)
d: \(x^2+5x+6\)
\(=x^2+2x+3x+6\)
\(=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)
e: \(3x^2-4x-4\)
\(=3x^2-6x+2x-4\)
\(=3x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(3x+2\right)\)
g: \(x^4+64y^4\)
\(=x^4+16x^2y^2+64y^4-16x^2y^2\)
\(=\left(x^2+8y^2\right)^2-\left(4xy\right)^2\)
\(=\left(x^2+8y^2-4xy\right)\left(x^2+8y^2+4xy\right)\)
h: \(a^2+b^2+2a-2b-2ab\)
\(=a^2-2ab+b^2+2a-2b\)
\(=\left(a-b\right)^2+2\left(a-b\right)=\left(a-b\right)\left(a-b+2\right)\)
i: \(\left(x+1\right)^2-2\left(x+1\right)\left(y-3\right)+\left(y-3\right)^2\)
\(=\left(x+1-y+3\right)^2\)
\(=\left(x-y+4\right)^2\)
k: \(x^2\left(x+1\right)-2x\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-2x+1\right)\)
\(=\left(x+1\right)\left(x-1\right)^2\)
Phân tích các đa thức sau thành nhân tử
a, ay^2 - 2ayz + az^2
b, x^2+ 6xy + 9y^2 - 16
c, 7a-7b+a^2-b^2
d, 36x^4 - 13x^2
e, 2x^3 - 18x
f, x2 - 49 + y^2 - 2xy
g, 2x+2y-x^2-xy
h, (x^2 + 3)^2 + 16
làm ơn giải chi tiết giúp mik vs ạ
a: \(=a\left(y^2-2yz+z^2\right)\)
\(=a\left(y-z\right)^2\)
b: \(=\left(x^2+6xy+9y^2\right)-16\)
=(x+3y)^2-16
=(x+3y+4)(x+3y-4)
c: \(=7\left(a-b\right)+\left(a-b\right)\left(a+b\right)\)
=(a-b)(7+a+b)
d: \(36x^4-13x^2\)
=x^2*36x^2-x^2*13
=x^2(36x^2-13)
f: x^2-2xy+y^2-49
=(x-y)^2-49
=(x-y-7)(x-y+7)
e: 2x^3-18x
=2x(x^2-9)
=2x(x-3)(x+3)
g: 2x+2y-x^2-xy
=2(x+y)-x(x+y)
=(x+y)(2-x)
h: (x^2+3)^2+16
=x^4+6x^2+25
=x^4+10x^2+25-4x^2
=(x^2+5)^2-4x^2
=(x^2-2x+5)(x^2+2x+5)
Phân tích các đa thức sau thành nhân tử:
1, 2(x-1)3-(x-1)
2, y(x-2y)2+xy2(2y-x)
3, xy(x+y)-2x-y
4, xy(x-3y)-2x+6y
1) \(2\left(x-1\right)^3-\left(x-1\right)=\left(x-1\right)\left(2\left(x-1\right)^2-1\right)\)
2) \(y\left(x-2y\right)^2+xy^2\left(2y-x\right)=\left(2y-x\right)\left(2\left(2y-x\right)+1\right)=\left(2y-x\right)\left(4y-2x+1\right)\)
3) \(xy\left(x+y\right)-x-y=xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\) (xem lại đề sửa -2x thành -x mới đúng)
4) \(xy\left(x-3y\right)-2x+6y=xy\left(x-3y\right)-2\left(x-3y\right)=\left(x-3y\right)\left(xy-2\right)\)
Phân tích đa thức thành nhân tử
1/ (a-3b)(a+3b)+(a-4b)(2b+3a)+(3b-a)(2a-b)
2/ (x-2y)(x+2y)+(2y-x)(3y-2x)+(y-x)2
1/Tự chép lại đb nha :v
=a2 - 9b2+2ab+3a2-8b2-12ab+6ab-3b2-2a2+ab
= 2a2-3ab-20b2
= (2a2+5ab) - (8ab+20b2)
= a(2a+5b) - 4b(2a+5b)
=(2a+5b)(a-4b)
câu 2 tương tự nhé :)
Bài 2: Phân tích đa thức thành nhân tử
a) x2−xy+5y−25
b) xy−y2−3x+3y
c) x2(x−3)−4x+12
d) 2a(x+y)−x−y
e) 2x−4+5x2−10x
g) 10ax−5ay−2x+y
h) a2−2a+1−b2
a) x2-xy+5y-25
= x(2-y)+ 5(y-2)
= x(2-y)-5(2-y)
= (x-5)(2-y)
h: \(=\left(a-1-b\right)\left(a-1+b\right)\)
Phân tích đa thức thành nhân tử a)12x^3-13x+3 b)2x^2+5x^3+x^2y c)(x+y)^3-x^3-y^3 d)1/2(x^2+y^2)^2-2x^2y^2
c: \(\left(x+y\right)^3-x^3-y^3\)
\(=\left(x+y\right)^3-\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-x^2+xy-y^2\right)\)
\(=3xy\left(x+y\right)\)
\(x^3+2x^2y+xy^2-4x\)
\(8a^3+4a^2b-2ab-b^3\)
phân tích đa thức thành nhân tử
a, Ta có: \(x^3+2x^2y+xy^2-4x\)
\(=x\left(x^2+2xy+y^2-4\right)\)
\(=x\left[\left(x+y\right)^2-2^2\right]\)
\(=x\left(x+y+2\right)\left(x+y-2\right)\)
b, Ý này dễ lắm, cậu tự làm nha!!!
BÀi 1: Phân tích đa thức thành nhân tử
a)x3+8x2+17x+10
b)abc+ab+bc+ca+a+b+c+1
c)4x4+81
d)64x4+y4
e)x5+x4+1
f)x+2y-xy-2
g)a2+b2-x2-y2+2ab-2xy
a. = \(\left(x^3+x^2\right)+\left(7x^2+7x\right)+\left(10x+10\right)\)
= \(x^2\left(x+1\right)+7x\left(x+1\right)+10x\left(x+1\right)\)
= \(\left(x+1\right)\left(x^2+7x+10x\right)\)
= \(\left(x+1\right)\left(x+2\right)\left(x+5\right)\)
Phân tích đa thức sau thành nhân tử
a) (a^2+b^2)^2-4a^2b^2
b) 3x^2-3xy-5x+5y
c) -x^3+3x^2 -3x+1
d) 2x^2+4xy+2y^2- 8z^2
e) a^3-a^2-a+1
f) x^3-2xy-x^2y+2y^2
e) Ta có: \(a^3-a^2-a+1\)
\(=a^2\left(a-1\right)-\left(a-1\right)\)
\(=\left(a-1\right)\left(a^2-1\right)\)
\(=\left(a-1\right)^2\cdot\left(a+1\right)\)
f) Ta có: \(x^3-2xy-x^2y+2y^2\)
\(=x^2\left(x-y\right)-2y\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2-2y\right)\)
a) \(\left(a^2+b^2\right)^2-4a^2b^2=\left(a^2+b^2+2ab\right)\left(a^2+b^2-2ab\right)=\left(a+b\right)^2.\left(a-b\right)^2\)
b) \(3x^2-3xy-5x+5y=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)
c) \(-x^3+3x^2-3x+1=\left(1-x\right)^3\)
d) Đề sai ko ???
e) \(a^3-a^2-a+1=a^2\left(a-1\right)-\left(a-1\right)=\left(a-1\right)\left(a^2-1\right)=\left(a-1\right)^2\left(a+1\right)\)
f) \(x^3-2xy-x^2y+2y^2=x^2\left(x-y\right)-2y\left(x-y\right)=\left(x-y\right)\left(x^2-2y\right)\)
a, \(=\left(a^2+b^2-2ab\right)\left(a^2+b^2+2ab\right)=\left(\left(a-b\right)\left(a+b\right)\right)^2=\left(a^2-b^2\right)^2\)
\(b,=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)
\(c,=-\left(x^2-3x^2+3x-1\right)=-\left(x-1\right)^3\)
\(d,=2\left(x^2+2xy+y^2-4z^2\right)=2\left(\left(x+y\right)^2-4z^2\right)=2\left(x+y-2z\right)\left(x+y+2z\right)\)
\(e,=a^2\left(a-1\right)-\left(a-1\right)=\left(a-1\right)\left(a^2-1\right)\)
\(f,=x^2\left(x-y\right)-2y\left(x-y\right)=\left(x^2-2y\right)\left(x-y\right)\)