tìm điều kiện xác định các phân thức
x + y / ( x + 3 ) mũ 2 + ( y -2 ) mũ 2
Hãy tìm một đơn thức với các biến là x,y thỏa mãn các điều kiện sau: - số mũ của x và y tỉ lệ với 2 và 3/2 - số mũ của x lớn hơn số mũ của y là 1 - giá trị của đơn thức tại x=2, y=-3 bằng 1296
Tính giá trị biểu thức
x mũ 3 + y mũ 3 + xy + x mũ 3 + y mũ 3 tại x = -1; y = 3
\(x^3+y^3+xy+x^3+y^3=2x^3+2y^3+xy\)
Thay x=-1,y=3 vào biểu thức ta có:
\(2x^3+2y^3+xy=2.\left(-1\right)^3+2.3^3+\left(-1\right).3=2.\left(-1\right)+2.27+\left(-3\right)=-2+54-3=49\)
x3+y3+xy+x3+y3=2x3+2y3+xyx3+y3+xy+x3+y3=2x3+2y3+xy
Thay x=-1,y=3 vào biểu thức ta có:
2x3+2y3+xy=2.(−1)3+2.33+(−1).3=2.(−1)+2.27+(−3)=−2+54−3=49
\(x^3+y^3+xy+x^3+y^3=2x^3+2y^3+xy\)
Thay x = -1 ; y = 3 ta đc \(2\left(-1\right)+2.27+\left(-1\right).3=-2+54-3=49\)
tìm x,y thỏa mãn đồng thời hai điều kiện sau:
4x=5y và x mũ 2 - y mũ 2 = 1
\(4x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}\)
Đặt \(\dfrac{x}{5}=\dfrac{y}{4}=k\Rightarrow\left\{{}\begin{matrix}x=5k\\y=4k\\\end{matrix}\right.\)
Thay vào \(x^2-y^2=1\)
\(\Rightarrow\left(5k\right)^2-\left(4k\right)^2=1\)
\(\Leftrightarrow25k^2-16k^2=1\)
\(\Leftrightarrow9k^2=1\)
\(\Leftrightarrow k^2=\dfrac{1}{9}\)
\(\Leftrightarrow k=\pm\dfrac{1}{3}\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=5k=5.\dfrac{1}{3}=\dfrac{5}{3}\\y=4k=4.\dfrac{1}{3}=\dfrac{4}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x=5k=5.\left(-\dfrac{1}{3}\right)=-\dfrac{5}{3}\\y=4k=4.\left(-\dfrac{1}{3}\right)=-\dfrac{4}{3}\end{matrix}\right.\end{matrix}\right.\)
cho các đơn thức sau 5x mũ 2 y mũ 3; 10 mũ 3 y mũ 2; x mũ 2 y mũ 3; -3x mũ 3 y mũ 2;1/2 x mũ 2 y mũ 3 ; -5x mũ 3 y mũ 2; x mũ 2 y mũ 3 tìm và nhóm các đơn thức đồng dạng rồi tính tổng các đơn thức đó
Nhóm 1: 5x^2y^3;x^2y^3;1/2x^2y^3;x^2y^3
Tổng là 6,5x^2y^3
Nhóm 2: 10x^3y^2;-3x^3y^2;-5x^3y^2
Tổng là 2x^3y^2
cho các đơn thức sau tìm nhóm đơn thức đồng dạng 5x mũ 2 y mũ 3; âm 5x mũ 3 y mũ 2; 1/2 x mũ 2 y mux2 z; x mũ 2 y mũ 3 âm 3/4 x mũ 3 mũ 2; âm x mũ 2 y mũ 2 z
Rút gọn các phân thức sau:
a) \(\dfrac{5x}{10}\)
b)\(\dfrac{4xy}{2y}\) (y≠0)
c)\(\dfrac{5x-5y}{3x-3y}\) (x≠y)
d) \(\dfrac{x^2-y^2}{x+y}\)(chưa có điều kiện xác định)
e) \(\dfrac{x^3-x^2+x-1}{x^2-1}\)(chưa có điều kiện xác định)
f) \(\dfrac{x^2+4x+4}{2x+4}\)(chưa có điều kiện xác định)
a) \(\dfrac{5x}{10}=\dfrac{x}{2}\)
b) \(\dfrac{4xy}{2y}=2x\left(y\ne0\right)\)
c) \(\dfrac{5x-5y}{3x-3y}=\dfrac{5}{3}\left(x\ne y\right)\)
d) \(\dfrac{x^2-y^2}{x+y}=x-y\left(đk:x\ne-y\right)\)
e) \(\dfrac{x^3-x^2+x-1}{x^2-1}=\dfrac{x^2+1}{x+1}\left(đk:x\ne\pm1\right)\)
f) \(\dfrac{x^2+4x+4}{2x+4}=\dfrac{x+2}{2}\left(đk:x\ne-2\right)\)
M = 2 x mũ 2 * y mũ 4 + 4xyz - 2x mũ 2 - 5 + 3x mũ 2 y mũ 4 - 4xyz + + - y mũ 9 . Hãy thu gọn đa thức sau và xác định bậc của đa thức
cho đơn thức A = 2/3 x mũ 3 y . 3/4 xy mũ 2 z mũ 2 . a, thu gọn đơn thức A . b, tìm bậc của đơn thức thu gọn . c xác định phần hệ số , phần biến của đơn thức thu gọn . d, tính giá trị của đơn thức A tại x = -1 , y = -2 , z = -3
\(a,A=\dfrac{2}{3}x^3y.\dfrac{3}{4}xy^2z^2=\dfrac{1}{2}x^4y^3z^2\)
b, Bậc:9
c, Hệ số: `1/2`
Biến: x4y3z2
d, Thay x=-1, y=-2, z=-3 vào A ta có:
\(A=\dfrac{1}{2}x^4y^3z^2=\dfrac{1}{2}\left(-1\right)^4.\left(-2\right)^3.\left(-3\right)^2=\dfrac{1}{2}.\left(-8\right).9=-36\)
a, \(A=\dfrac{2}{3}x^3y.\dfrac{3}{4}xy^2z^2=\dfrac{x^4y^5z^2}{2}\)
b, bậc 11
c, hệ số 1/2 ; biến x^4y^5z^2
d, Thay x = -1 ; y = -1 ; z = -3 ta được
\(\dfrac{1.1.9}{2}=\dfrac{9}{2}\)
chịu khó quá
đi hỏi mạng mà như thế này
bài 2; phân tích các đa thức sau thành nhân tử
a, x mũ 2 + 4x - y mũ 2 + 4
b, 25 - 4x mũ 2 - 4xy - y mũ 2
c, x mũ 3 - x + y mũ 3 - y
\(a,x^2+4x-y^2+4\)
\(=\left(x^2+4x+4\right)-y^2\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2-y\right)\left(x+2+y\right)\)
\(b,25-4x^2-4xy-y^2\)
\(=25-\left(4x^2+4xy+y^2\right)\)
\(=5^2-\left(2x+y\right)^2\)
\(=\left(5-2x+y\right)\left(5+2x+y\right)\)
\(c,x^3-x+y^3-y\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+1\right)\)