Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Quốc Tuấn
Xem chi tiết
Vô Danh Tiểu Tốt
Xem chi tiết
hạ băng
Xem chi tiết
KHANH QUYNH MAI PHAM
Xem chi tiết
Phạm Tuấn Kiệt
Xem chi tiết
Linh Lê
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 9 2020 lúc 18:23

a/

\(cos^4x-\left(1-2sin^2x\right)+2sin^6x=0\)

\(\Leftrightarrow\left(cos^2x+1\right)\left(cos^2x-1\right)+2sin^2x\left(sin^4x+1\right)=0\)

\(\Leftrightarrow-sin^2x\left(cos^2x+1\right)+2sin^2x\left(sin^4x+1\right)=0\)

\(\Leftrightarrow sin^2x\left(2sin^4x-cos^2x+1\right)=0\)

\(\Leftrightarrow sin^2x\left(2sin^4x+sin^2x\right)=0\)

\(\Leftrightarrow sin^4x\left(2sin^2x+1\right)=0\)

\(\Leftrightarrow sinx=0\)

\(\Leftrightarrow x=k\pi\)

Nguyễn Việt Lâm
20 tháng 9 2020 lúc 18:28

b/

\(cos4x=\frac{1}{2}+\frac{1}{2}cos6x\)

\(\Leftrightarrow2\left(2cos^22x-1\right)=1+4cos^32x-3cos2x\)

\(\Leftrightarrow4cos^32x-4cos^22x-3cos2x+3=0\)

\(\Leftrightarrow\left(cos2x-1\right)\left(4cos^22x-3\right)=0\)

\(\Leftrightarrow\left(cos2x-1\right)\left(2cos4x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=1\\cos4x=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{12}+\frac{k\pi}{2}\\x=-\frac{\pi}{12}+\frac{k\pi}{2}\end{matrix}\right.\)

\(\Rightarrow x=\left\{0;-\frac{11\pi}{12};-\frac{5\pi}{12};\frac{\pi}{12};\frac{7\pi}{12};-\frac{7\pi}{12};-\frac{\pi}{12};\frac{5\pi}{12};\frac{11\pi}{12}\right\}\)

Bạn tự cộng lại

Khách vãng lai đã xóa
Nguyễn Việt Lâm
20 tháng 9 2020 lúc 18:32

c/

\(\Leftrightarrow2cos^2x-1-\left(2m+1\right)cosx+m+1=0\)

\(\Leftrightarrow2cos^2x-\left(2m+1\right)cosx+m=0\)

\(\Leftrightarrow2cos^2x-cosx-2mcosx+m=0\)

\(\Leftrightarrow cosx\left(2cosx-1\right)-m\left(2cosx-1\right)=0\)

\(\Leftrightarrow\left(cosx-m\right)\left(2cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=\frac{1}{2}\\cosx=m\end{matrix}\right.\)

Do \(cosx=\frac{1}{2}\) vô nghiệm trên \(\left(\frac{\pi}{2};\frac{3\pi}{2}\right)\) nên pt có nghiệm khi và chỉ khi \(cosx=m\) có nghiệm trên khoảng đã cho

\(-1< cosx< 0\Rightarrow-1< m< 0\)

Quang Huy Điền
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 9 2020 lúc 18:59

a/

Đặt \(cosx=t\Rightarrow0< t\le1\)

\(\Rightarrow t^2-2mt+4\left(m-1\right)=0\)

\(\Leftrightarrow t^2-4-2m\left(t-2\right)=0\)

\(\Leftrightarrow\left(t-2\right)\left(t+2-2m\right)=0\)

\(\Leftrightarrow t=2m-2\)

\(\Rightarrow0< 2m-2\le1\Rightarrow1< m\le\frac{3}{2}\)

b.

\(x\in\left(-\frac{\pi}{2};\frac{\pi}{2}\right)\Rightarrow\frac{x}{2}\in\left(-\frac{\pi}{4};\frac{\pi}{4}\right)\)

Đặt \(sin\frac{x}{2}=t\Rightarrow-\frac{\sqrt{2}}{2}< t< \frac{\sqrt{2}}{2}\)

\(\Rightarrow4t^2+2t+m-2=0\Leftrightarrow4t^2+2t-2=-m\)

Xét \(f\left(t\right)=4t^2+2t-2\) trên \(\left(-\frac{\sqrt{2}}{2};\frac{\sqrt{2}}{2}\right)\)

\(f\left(-\frac{\sqrt{2}}{2}\right)=-\sqrt{2}\) ; \(f\left(\frac{\sqrt{2}}{2}\right)=\sqrt{2}\) ; \(f\left(-\frac{1}{4}\right)=-\frac{9}{4}\)

\(\Rightarrow-\frac{9}{4}\le f\left(t\right)< \sqrt{2}\Rightarrow-\frac{9}{4}\le-m< \sqrt{2}\)

\(\Rightarrow-\sqrt{2}< m\le\frac{9}{4}\)

Hoàng Quốc Tuấn
Xem chi tiết
Huyền Nguyễn
Xem chi tiết