Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ha Thi Dinh Trung tam th...
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 4 2019 lúc 6:44

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Tam giác ABC có hai đường trung tuyến BM và CN cắt nhau tại G

Suy ra: G là trọng tâm của ∆ ABC .

⇒ GB = 2GM (tính chất đường trung tuyến)

GC = 2GN (tính chất đường trung tuyến)

Điểm D đối xứng với điểm G qua điểm M

⇒ MG = MD hay GD = 2GM

Suy ra: GB = GD (l)

Điểm E đối xứng với điểm G qua điểm N

⇒ NG = NE hay GE = 2GN

Suy ra: GC = GE (2)

Từ (1) và (2) suy ra tứ giác BCDE là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)

Xét  ∆ BCM và  ∆ CBN, có: BC cạnh chung

∠ (BCM) =  ∠ (CBN) (tính chất tam giác cân)

CM = BN (vì AB = AC)

Suy ra:  ∆ BCM = ∆ CBN (c.g.c)

⇒  ∠ (MBC) =  ∠ (NCB) ⇒  ∆ GBC cân tại G ⇒ GB = GC ⇒ BD = CE

Hình bình hành BCDE có hai đường chéo bằng nhau nên nó là hình chữ nhật.

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
30 tháng 6 2017 lúc 11:36

Hình chữ nhật

giang đào phương
Xem chi tiết
Bùi Minh Chính
Xem chi tiết
Nguyễn Kiều Mỹ Loan
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 7 2021 lúc 13:10

a)

Xét tứ giác MNPQ có 

G là trung điểm của đường chéo MP(gt)

G là trung điểm của đường chéo NQ(gt)

Do đó: MNPQ là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) 

Xét ΔABC có 

BM là đường trung tuyến ứng với cạnh AC(gt)

CN là đường trung tuyến ứng với cạnh AB(gt)

BM cắt CN tại G(gt)

Do đó: G là trọng tâm của ΔABC(Định lí ba đường trung tuyến của tam giác)

Suy ra: \(MG=\dfrac{1}{3}MB;BG=\dfrac{2}{3}MB;NG=\dfrac{1}{3}NC;CG=\dfrac{2}{3}NC\)(1)

Ta có: G là trung điểm của MP(gt)

nên MG=GP

mà \(MG=\dfrac{1}{3}MB\)

nên \(MG=GP=\dfrac{1}{3}MB\)

Ta có: MG+GP=MP(G nằm giữa M và P)

nên \(MP=\dfrac{1}{3}MB+\dfrac{1}{3}MB=\dfrac{2}{3}MB\)(1)

Ta có: G là trung điểm của NQ(gt)

nên \(GN=GQ=\dfrac{1}{3}NC\)

Ta có: NG+GQ=NQ(G là trung điểm của NQ)

nên \(NQ=\dfrac{1}{3}NC+\dfrac{1}{3}NC=\dfrac{2}{3}NC\)(2)

Ta có: \(AN=NB=\dfrac{AB}{2}\)(N là trung điểm của AB)

\(AM=MC=\dfrac{AC}{2}\)(M là trung điểm của AC)

mà AB=AC(ΔBAC cân tại A)

nên AN=NB=AM=MC

Xét ΔAMB và ΔANC có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAM}\) chung

AM=AN(cmt)

Do đó: ΔAMB=ΔANC(c-g-c)

Suy ra: BM=CN(hai cạnh tương ứng)(3)

Từ (1), (2) và (3) suy ra NQ=MP

Hình bình hành MNPQ có NQ=MP(cmt)

nên MNPQ là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

tran khanh hoi
Xem chi tiết
Hưng Việt Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 9 2021 lúc 20:17

b: Xét ΔABC có 

E là trung điểm của AB

D là trung điểm của AC

Do đó: ED là đường trung bình của ΔABC

Suy ra: ED//BC và \(ED=\dfrac{BC}{2}\left(1\right)\)

Xét ΔGBC có

M là trung điểm của GB

N là trung điểm của GC

Do đó: NM là đường trung bình của ΔGBC

Suy ra: MN//BC và \(MN=\dfrac{BC}{2}\left(2\right)\)

Từ (1) và (2) suy ra ED//MN và ED=MN

hay MNDE là hình bình hành

Đoàn Thị Thanh hải
Xem chi tiết
Trần Thị Thu Hường
3 tháng 11 2016 lúc 14:29

Tự vẽ hình:

cminh:Vì D đối xứng với G qua M

        =>GM=MD Hay GD=2GM

Vì BM;CN cắt nhau tại G trong tam giác ABC

=>G là trọng tâm trong Tam giác ABC =>BG=2GM

Suy ra : GD=BG(vì =2GM)=> G là trung điểm của BD (1)

Ta lại có : E đối xứng với G qua N=> EN=GN Hay EG=2NG

Và CG=2GN( G là trọng tâm)

Suy ra: CG=EG ( vì =2NG) (2) (*)

Từ (1) (2)=> Tứ giác BEDC là hình bình hành

Xét \(\Delta\)CBM Và \(\Delta\)BCN Có:

       BC: Cạnh chung

Góc B=C(g/t)

       BN=CM(AB=AC)

     

=> hai tam giác bằng nhau(c-g-c)

=>MBC=NCB(2 góc tương ứng) hay tam giác GBC cân=> BG=GC (**)

Từ (*) (**)=> Hình bình hành BEDC là hình chữ nhật