Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Duc nguyen tri
Xem chi tiết
Đinh Đức Hùng
24 tháng 5 2018 lúc 18:22

Do a;b;c nguyên nên \(a^3;b^3;c^3\equiv0;1;6\left(mod7\right)\)

Nếu lập phương của 1 số trong 3 số trên đồng dư với 0 theo Mod 7 thì số đó \(⋮7\)\(\Rightarrow abc⋮7\Rightarrowđpcm\)

Nếu không tồn tại lập phương của  số nào \(\equiv0\left(mod7\right)\) thì \(a^3;b^3;c^3\) chia 7 dư 1 hoặc 6

Do đó trong 3 số \(a^3;b^3;c^3\) có ít nhất 2 số chia 7 cùng số dư (nguyên lý Dirichle) nên hiệu của nó \(⋮7\)

\(\Rightarrow\left(a^3-b^3\right)\left(b^3-c^3\right)\left(c^3-a^3\right)⋮7\Rightarrowđpcm\)

Đức Anh Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 4 2023 lúc 8:49

3: \(\left\{{}\begin{matrix}a+b>=2\sqrt{ab}\\b+c>=2\sqrt{bc}\\a+c>=2\sqrt{ac}\end{matrix}\right.\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)>=8abc\)

1: =>(a+b)(a^2-ab+b^2)-ab(a+b)>=0

=>(a+b)(a^2-2ab+b^2)>=0

=>(a+b)(a-b)^2>=0(luôn đúng)

Trần Tuấn Hoàng
11 tháng 4 2023 lúc 15:01

2) Áp dụng bất đẳng thức ở câu 1 ta có:

\(\dfrac{1}{a^3+b^3+abc}\le\dfrac{1}{ab\left(a+b\right)+abc}=\dfrac{1}{ab\left(a+b+c\right)}\)

Tương tự: \(\dfrac{1}{b^3+c^3+abc}\le\dfrac{1}{bc\left(a+b+c\right)}\)

và \(\dfrac{1}{c^3+a^3+abc}\le\dfrac{1}{ca\left(a+b+c\right)}\)

Cộng vế theo vế của các bất đẳng thức trên ta được:

\(\dfrac{1}{a^3+b^3+abc}+\dfrac{1}{b^3+c^3+abc}+\dfrac{1}{c^3+a^3+abc}\le\dfrac{1}{a+b+c}\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=\dfrac{1}{a+b+c}.\dfrac{a+b+c}{abc}=\dfrac{1}{abc}\left(đpcm\right)\)

Dấu "=" xảy ra khi a=b=c.

Elki Syrah
Xem chi tiết
Lê Song Phương
2 tháng 1 2023 lúc 13:04

 Dễ dàng chứng minh rằng các số có dạng \(n^3\) khi chia cho 7 sẽ chỉ có các số dư là \(0,1,6\). (Bằng cách đặt \(n=7k+i\left(i=\overline{0,6}\right)\) rồi khai triển biểu thức \(\left(7k+i\right)^3=\left(7k\right)^3+3\left(7k\right)^2i+3.7k.i^2+i^3\) và xét số dư của \(i^3\) cho 7.

 Nếu trong 3 số a, b, c có 1 số chia hết cho 7 thì đương nhiên ta có đpcm.

 Nếu trong 3 số a, b, c không có số nào chia hết cho 7 (tức là không có số nào trong 3 số \(a^3,b^3,c^3\) chia hết cho 7), thì theo nguyên lí Dirichlet, tồn tại 2 số trong 3 số \(a^3,b^3,c^3\) có cùng số dư khi chia cho 7 (do lúc này chỉ còn 2 số dư là 1,6). Giả sử 2 số đó là \(a^3,b^3\). Khi đó \(a^3-b^3⋮7\) \(\Rightarrowđpcm\)

Vậy trong mọi trường hợp, ta đều có đpcm.

Rhider
Xem chi tiết
Nhàn Nguyễn
Xem chi tiết
 Mashiro Shiina
18 tháng 12 2018 lúc 19:26

Ngc dấu r bạn

Kamato Heiji
Xem chi tiết
Hồng Quang
15 tháng 2 2021 lúc 13:01

thử bài bất :D 

Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)

Hoàn toàn tương tự: 

\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)

\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)

Cộng (*),(**),(***) vế theo vế ta được:

\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)

Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )

Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=1

 

 

 

Hồng Quang
15 tháng 2 2021 lúc 13:11

1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D 

Hoàng Anh Thắng
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 3 2022 lúc 23:36

\(\dfrac{a^3}{\left(b+2\right)\left(c+3\right)}+\dfrac{b+2}{36}+\dfrac{c+3}{48}\ge3\sqrt[3]{\dfrac{a^3\left(b+2\right)\left(c+3\right)}{1728\left(b+2\right)\left(c+3\right)}}=\dfrac{a}{4}\)

Tương tự: \(\dfrac{b^3}{\left(c+2\right)\left(a+3\right)}+\dfrac{c+2}{36}+\dfrac{a+3}{48}\ge\dfrac{b}{4}\)

\(\dfrac{c^3}{\left(a+2\right)\left(b+3\right)}+\dfrac{a+2}{36}+\dfrac{b+3}{48}\ge\dfrac{c}{4}\)

Cộng vế:

\(P+\dfrac{7\left(a+b+c\right)}{144}+\dfrac{17}{48}\ge\dfrac{a+b+c}{4}\)

\(\Rightarrow P\ge\dfrac{29}{144}\left(a+b+c\right)-\dfrac{17}{48}\ge\dfrac{29}{144}.3\sqrt[3]{abc}-\dfrac{17}{48}=\dfrac{1}{4}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Hoàng Anh Thắng
Xem chi tiết
Hoàng Anh Thắng
14 tháng 3 2022 lúc 22:02

chết đăng nhầm sogy nha

Thiên An
Xem chi tiết
Thắng Nguyễn
26 tháng 3 2017 lúc 11:07

Bài 1:Với \(ab=1;a+b\ne0\) ta có: 

\(P=\frac{a^3+b^3}{\left(a+b\right)^3\left(ab\right)^3}+\frac{3\left(a^2+b^2\right)}{\left(a+b\right)^4\left(ab\right)^2}+\frac{6\left(a+b\right)}{\left(a+b\right)^5\left(ab\right)}\)

\(=\frac{a^3+b^3}{\left(a+b\right)^3}+\frac{3\left(a^2+b^2\right)}{\left(a+b\right)^4}+\frac{6\left(a+b\right)}{\left(a+b\right)^5}\)

\(=\frac{a^2+b^2-1}{\left(a+b\right)^2}+\frac{3\left(a^2+b^2\right)}{\left(a+b\right)^4}+\frac{6}{\left(a+b\right)^4}\)

\(=\frac{\left(a^2+b^2-1\right)\left(a+b\right)^2+3\left(a^2+b^2\right)+6}{\left(a+b\right)^4}\)

\(=\frac{\left(a^2+b^2-1\right)\left(a^2+b^2+2\right)+3\left(a^2+b^2\right)+6}{\left(a+b\right)^4}\)

\(=\frac{\left(a^2+b^2\right)^2+4\left(a^2+b^2\right)+4}{\left(a+b\right)^4}=\frac{\left(a^2+b^2+2\right)^2}{\left(a+b\right)^4}\)

\(=\frac{\left(a^2+b^2+2ab\right)^2}{\left(a+b\right)^4}=\frac{\left[\left(a+b\right)^2\right]^2}{\left(a+b\right)^4}=1\)

Bài 2: \(2x^2+x+3=3x\sqrt{x+3}\)

Đk:\(x\ge-3\)

\(pt\Leftrightarrow2x^2-3x\sqrt{x+3}+\sqrt{\left(x+3\right)^2}=0\)

\(\Leftrightarrow2x^2-2x\sqrt{x+3}-x\sqrt{x+3}+\sqrt{\left(x+3\right)^2}=0\)

\(\Leftrightarrow2x\left(x-\sqrt{x+3}\right)-\sqrt{x+3}\left(x-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{x+3}\right)\left(2x-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+3}=x\\\sqrt{x+3}=2x\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x+3=x^2\left(x\ge0\right)\\x+3=4x^2\left(x\ge0\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-x-3=0\left(x\ge0\right)\\4x^2-x-3=0\left(x\ge0\right)\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1+\sqrt{13}}{2}\\x=1\end{cases}\left(x\ge0\right)}\)

Bài 4:

Áp dụng BĐT AM-GM ta có: 

\(2\sqrt{ab}\le a+b\le1\Rightarrow b\le\frac{1}{4a}\)

Ta có: \(a^2-\frac{3}{4a}-\frac{a}{b}\le a^2-\frac{3}{4a}-4a^2=-\left(3a^2+\frac{3}{4a}\right)\)

\(=-\left(3a^2+\frac{3}{8a}+\frac{3}{8a}\right)\le-3\sqrt[3]{3a^2\cdot\frac{3}{8a}\cdot\frac{3}{8a}}=-\frac{9}{4}\)

Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)