x/y=2/3 và x mũ 2 +y mũ 2 = 26
bài 1: Rút gọn giá trị biểu thức:
a) x(x+y) - y(x+y) với x=(-1/2)mũ 5 : (1/2) mũ 4 và y=8 mũ 2 : (-2) mũ 5
b) (x-y) (x mũ 2 + xy + y mũ 2) -(x+y) ( x mũ 2 - y mũ 2 ) với x-y=0
c) x mũ 3 ( x mũ 2 - y mũ 2 ) + y mũ 2 ( x mũ 3 - y mũ 3 ) với x=16 mũ 5 : 8 mũ 5 : (-2)mũ 4 và |y|=1
d) x=y=0; x = y = 1; x = 1/2; y= -3/2; x= căn 4; y= căn 9
e) 5x ( 4x mũ 2 - 2x + 1) - 2x ( 10x mũ 2 - 5x-2) với x = -3 ( -5 )
g) 12- ( 2-3b ) + 35b - 9 ( b+1 ) với b= (1/5) mũ 5 : (1/4) mũ 2
f) ( x-y) ( x mũ 2 + xy + y mũ 2 ) + ( x+y ) ( x mũ 2 -xy + y mũ 2 ) với x=2 và y = 2013 mũ 2014
2 mũ x + 26 = 3 mũ y
\(2^x+26=3^y\)
\(\Leftrightarrow2^x=3^y-26\)
Để phương trình có nghiệm thì \(3^y>26\)
hay y>3
cho các đơn thức sau 5x mũ 2 y mũ 3; 10 mũ 3 y mũ 2; x mũ 2 y mũ 3; -3x mũ 3 y mũ 2;1/2 x mũ 2 y mũ 3 ; -5x mũ 3 y mũ 2; x mũ 2 y mũ 3 tìm và nhóm các đơn thức đồng dạng rồi tính tổng các đơn thức đó
Nhóm 1: 5x^2y^3;x^2y^3;1/2x^2y^3;x^2y^3
Tổng là 6,5x^2y^3
Nhóm 2: 10x^3y^2;-3x^3y^2;-5x^3y^2
Tổng là 2x^3y^2
( 3 x y - 2 ) mũ 2 = ( 3 x y - 2 ) mũ 6
Mình tick bằng nick có 26 điểm 😘😘😘😘
( 3y - 2 ) 2 = ( 3y - 2 )6
TH1 : ( 3y - 2 ) = 0
=> 02 = 02 ( luôn đúng )
=> 3y = 2
=> y = \(\frac{2}{3}\)
TH2 : 3y - 2 khác 0
=> ( 3y - 2 )2 : ( 3y - 2 )2 = ( 3y - 2 )6 : ( 3xy - 2 )2
=> ( 3y - 2 )4 = 1
=> 3y - 2 = + 1
=> y = 1 hoặc y = \(\frac{1}{3}\)
Bài 1: Rút gọn các biểu thức sau
a) (5x-y)(25x mũ 2 + 5xy + y mũ 2)
b) (x-3)(x mũ 2 + 3x + 9)-(54 + x mũ 3)
c) (2x+y)(4x mũ 2 - 2xy + y mũ 2) - (2x-y)(4x mũ 2 + 2xy + y mũ 2)
d) (x+y) mũ 2 + (x-y) mũ 2 + (x+y)(x-y) - 3x mũ 2
e) (x-3) mũ 3 - (x-3)(x mũ 2 + 3x + 9) +6(x+1) mũ 2
f) (x+y)(x mũ 2 - xy + y mũ 2) + (x-y)(x mũ 2 + xy + y mũ 2) - 2x mũ 3
g) x mũ 2 + 2x(y+1) + y mũ 2 + 2y + 1
a) ( 5x - y )( 25x2 + 5xy + y2 ) = ( 5x )3 - y3 = 125x3 - y3
b) ( x - 3 )( x2 + 3x + 9 ) - ( 54 + x3 ) = x3 - 33 - 54 - x3 = -27 - 54 = -81
c) ( 2x + y )( 4x2 - 2xy + y2 ) - ( 2x - y )( 4x2 + 2xy + y2 ) = ( 2x )3 + y3 - [ ( 2x )3 - y3 ]= 8x3 + y3 - 8x3 + y3 = 2y3
d) ( x + y )2 + ( x - y )2 + ( x + y )( x - y ) - 3x2 = x2 + 2xy + y2 + x2 - 2xy + y2 + x2 - y2 - 3x2 = y2
e) ( x - 3 )3 - ( x - 3 )( x2 + 3x + 9 ) + 6( x + 1 )2
= x3 - 9x2 + 27x - 27 - ( x3 - 33 ) + 6( x2 + 2x + 1 )
= x3 - 9x2 + 27x - 27 - x3 + 27 + 6x2 + 12x + 6
= -3x2 + 39x + 6
= -3( x2 - 13x - 2 )
f) ( x + y )( x2 - xy + y2 ) + ( x - y )( x2 + xy + y2 ) - 2x3
= x3 + y3 + x3 - y3 - 2x3
= 0
g) x2 + 2x( y + 1 ) + y2 + 2y + 1
= x2 + 2x( y + 1 ) + ( y2 + 2y + 1 )
= x2 + 2x( y + 1 ) + ( y + 1 )2
= ( x + y + 1 )2
= [ ( x + y ) + 1 ]2
= ( x + y )2 + 2( x + y ) + 1
= x2 + 2xy + y2 + 2x + 2y + 1
bài 1: Rút gọn giá trị biểu thức:
a) x(x+y) - y(x+y) với x=(-1/2)mũ 5 : (1/2) mũ 4 và y=8 mũ 2 : (-2) mũ 5
b) (x-y) (x mũ 2 + xy + y mũ 2) -(x+y) ( x mũ 2 - y mũ 2 ) với x-y=0
c) x mũ 3 ( x mũ 2 - y mũ 2 ) + y mũ 2 ( x mũ 3 - y mũ 3 ) với x=16 mũ 5 : 8 mũ 5 : (-2)mũ 4 và |y|=1
d) x=y=0; x = y = 1; x = 1/2; y= -3/2; x= căn 4; y= căn 9
e) 5x ( 4x mũ 2 - 2x + 1) - 2x ( 10x mũ 2 - 5x-2) với x = -3 ( -5 )
g) 12- ( 2-3b ) + 35b - 9 ( b+1 ) với b= (1/5) mũ 5 : (1/4) mũ 2
f) ( x-y) ( x mũ 2 + xy + y mũ 2 ) + ( x+y ) ( x mũ 2 -xy + y mũ 2 ) với x=2 và y = 2013 mũ 2014
a)<=>
A,=(x+y)(x-y)=x^2-y^2
x=(-1/2)^5:(1/2)^4=-1/2
x^2=1/4
y=8^2/(-2)^5=-2
y^2=4
A=1/4-4=-15/4
Tfim x,y,z
a,\(\frac{x}{2}=\frac{y}{1}=\frac{z}{3}\)và x mũ 2 nhân y mũ 2 = 162
b, \(\frac{2x}{3}=\frac{3y}{4}=\frac{z}{5}\)và x - y + z = 26
a. x^2.y^2=162
ta có \(\frac{x}{2}=\frac{y}{1}=\frac{z}{3}\)=>\(\frac{x^2}{4}=\frac{y^2}{1}=\frac{z^2}{9}\)
=>\(\frac{x^2}{4}.\frac{y^2}{1}=\frac{z^4}{81}\)còn lại do đề sai :))
b.\(\frac{2x}{3}=\frac{3y}{4}=\frac{z}{5}\)
=>\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{5}=\frac{x-y+z}{....}=\frac{26}{....}\)nhân phân phối là xong :))
a/ Dễ thấy x, y, z cùng dấu
\(\Rightarrow xy=\sqrt{162}=9\sqrt{2}\)
Ta lại có:
\(\frac{x}{2}.\frac{y}{1}=\frac{z^2}{9}\)
\(\Leftrightarrow z^2=\frac{9.9\sqrt{2}}{2}=\frac{81\sqrt{2}}{2}\)
\(\Rightarrow z=\pm9\sqrt{\frac{\sqrt{2}}{2}}=\pm\frac{9}{\sqrt[4]{2}}\)
Thế z tìm được x, y
tính A+B+C,A bằng x mũ 3 y mũ 2.B bằng x y mũ 3z .C bằng x y mũ 3z và x mũ 2+y mũ 2+ z mũ 2 bằng 1.xy bằng1/z
Làm phép chia:
a,(10 mũ 12 + 5 mũ 11 . 2 mũ 9 - 5 mũ 13 . 2 mũ 8) : 4 . 5 mũ 5 . 10 mũ 6
b,[5(x - y)mũ 4 - 3(x -y)mũ 3 + 4(x -y)mũ 2] : (y - x)mũ 2
c,[(x+y)mũ 5 - 2(x+y)mũ 4 + 3(x+y)mũ 3] : [-5(x+y)mũ 3]
a) \(\dfrac{10^{12}+5^{11}.2^9-5^{13}.2^8}{4.5^5.10^6}\)
\(=\dfrac{2^{12}.5^{12}+5^{11}.2^9-5^{13}.2^8}{2^2.5^5.2^6.5^6}\)
\(=\dfrac{2^{12}.5^{12}+5^{11}.2^9-5^{13}.2^8}{2^8.5^{11}}\)
\(=\dfrac{\left(2^8.5^{11}\right)\left(2^4.5+2-5^2\right)}{2^8.5^{11}}\)
\(=2^4.5+2-5^2\)
\(=57\)
b) \(\dfrac{\left[5\left(x-y\right)^4-3\left(x-y\right)^3+4\left(x-y\right)^2\right]}{\left(y-x\right)^2}\)
\(=\dfrac{\left(x-y\right)^2\left[5\left(x-y\right)^2-3\left(x-y\right)+4\right]}{\left(y-x\right)^2}\)
\(=\dfrac{\left(x^2+y^2-2xy\right)\left[5\left(x-y\right)^2-3\left(x-y\right)+4\right]}{\left(y^2+x^2-2xy\right)}\)
\(=5\left(x-y\right)^2-3\left(x-y\right)+4\)
c) \(\dfrac{\left(x+y\right)^5-2\left(x+y\right)^4+3\left(x+y\right)^3}{-5\left(x+y\right)^3}\)
\(=\dfrac{\left(x+y\right)^3\left[5\left(x+y\right)^2-2\left(x+y\right)+3\right]}{-5\left(x+y\right)^3}\)
\(=\dfrac{5\left(x+y\right)^2-2\left(x+y\right)+3}{-5}\)