4x(x-2018)-x+2018=0
Tìm x,y biết (4x-3y)^2018 + (x^2 + y^3-25 )^2018 =0
a) 4x ( x - 2018 ) - x + 2018 = 0
b) ( x + 1 ) 2 = x + 1
a) \(4x\left(x-2018\right)-x+2018=0\)
\(=>4x\left(x-2018\right)-\left(x-2018\right)=0\)
\(=>\left(4x-1\right)\left(x-2018\right)=0\)
\(=>\orbr{\begin{cases}4x-1=0\\x-2018=0\end{cases}=>\orbr{\begin{cases}x=\frac{1}{4}\\x=2018\end{cases}}}\)
vậy \(x=\frac{1}{4}\) hoặc \(x=2018\)
b) \(\left(x+1\right)^2=x+1\)
\(=>x^2+2x+1=x+1\)
\(=>x^2+2x+1-x-1=0\)
\(=>x^2+x=0\)
\(=>x\left(x+1\right)=0\)
\(=>\orbr{\begin{cases}x=0\\x+1=0\end{cases}=>\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
vậy \(x=0\)hoặc \(x=-1\)
a,
4x(x-2018)-(x-2018)=0
<=> (4x-1)(x-2018)=0
<=> 4x-1=0 hoặc x-2018=0
x1=1/4 ; x2=2018 là nghiệm của pt
b,
(x+1)2 =x+1
=> (x+1)2-(x+1)=0
<=>(x+1)(x+1-1)=0
x1=-1 ; x2=0 là nghiệm của pt
ko cần hằng đẳng thức j cả
Tìm x, y
| x - 2017 | + | y - 2018 | ≤ 0
3| x - y |5 + 10| y + 2/3 |7 ≤ 0
1/2(3/4x - 1/2)2018 + 2017/2018|4/5 y+ 6/25| ≤ 0
2017 |2x - y | 2018 + 2018 | y - 4 |2017 ≤ 0
4x(x-2018)-x+2008=0
\(4x\left(x-2018\right)-x+2018=0\)
\(\Rightarrow4x\left(x-2018\right)-\left(x-2018\right)=0\)
\(\Rightarrow\left(x-2018\right)\left(4x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2018=0\\4x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2018\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy.....................
4x(x-2018)-x+2008=0
\(4x\left(x-2018\right)-x+2018=0\)
\(\Rightarrow4x\left(x-2018\right)-\left(x-2018\right)=0\)
\(\Rightarrow\left(x-2018\right)\left(4x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2018=0\\4x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2018\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy ..................................................
#Kαrμto
cho x,y thoa man 4x2+2y2-4xy-20x+4y+34=0 tinhS=(x-4)2018+(y-4)2018
a)(4x-3y)2018+(x2+y2-25)2018=0
Giải hộ mình với nhé :b) |x+1|+|x+2|+...+|x+9|=10x
b) Vì GTTĐ luôn lớn hơn hoặc bằng 0
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+...+\left|x+9\right|\ge0\forall x\)
\(\Leftrightarrow10x\ge0\forall x\)
\(\Leftrightarrow x\ge0\)
Từ đây ta có :
\(x+1+x+2+...+x+9=10x\)
\(9x+45=10x\)
\(10x-9x=45\)
\(x=45\)
Vậy x = 45
(2x2 + x-2018)2 + 2(x2-4x-2030)2 = 3(2x2+x-2018)(x2-4x-2018)
Tìm x:
a,2.{x+5}-x^2-5=0
b,2x.{x-5}-x.{3+2x}=26
c,{x+7}2-x.{x-3}=12
d,9.{x-2018}-x+2018=0
e,4x.{x+1}+{3x-2}.{3x+2}=15
b,2x.(x-5)-x.(3+2x)=26
2x2 - 10x - 3x - 2x2 = 26
-13x = 26
x = -2
c, (x+7)2-x.(x-3)=12
x2 +14x +49 - x2 + 3x = 12
17x + 49 = 12
17x = - 37
x = \(\dfrac{-37}{17}\)
d, 9( x -2018) - x+ 2018 =0
9( x -2018) - (x -2018) = 0
( 9-1)(x -2018) = 0
8( x -2018) = 0
x -2018 = 0
x = 2018
a: =>2x+10-x^2-5=0
=>-x^2+2x+5=0
=>\(x\in\left\{1+\sqrt{6};1-\sqrt{6}\right\}\)
e: =>4x^2+4x+9x^2-4=15
=>13x^2+4x-19=0
=>\(x\in\left\{\dfrac{-2+\sqrt{251}}{13};\dfrac{-2-\sqrt{251}}{13}\right\}\)