Cho tam giác ABC, H là trực tâm. Chứng minh rằng: CH×sinB+BH×sinC= BC
Cho tam giác ABC, H là trực tâm.
CMR CH×sinB+BH×sinC=BC
uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
Cho tam giác ABC, H là trực tâm.
Chứng minh rằng: CH×sinB+BH×sinC= BC
Cho tam giác ABC có AB=21m , AC= 28m , BC=35m. a) chứng minh tam giác ABC vuông b) tính sinB,sinC c)gọi H là chân đường cao hạ từ A.Tính BH, CH d)gọi M là trung điểm của BC.Tính AM và diện tích tam giác AHM Giúp mik câu d với mik bí câu này 🥰
a) Ta có: \(AB^2+AC^2=21^2+28^2=1225=35^2=BC^2\)
=> Tam giác ABC vuông tại A(Pytago đảo)
b) Xét tam giác ABC vuông tại A có:
\(sinB=\dfrac{AC}{BC}=\dfrac{28}{35}=\dfrac{4}{5}\)
\(sinC=\dfrac{AB}{BC}=\dfrac{21}{35}=\dfrac{3}{5}\)
c) Áp dụng HTL:
\(AB^2=BH.BC\)
\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{21^2}{35}=\dfrac{63}{5}\left(m\right)\)
\(CH=BC-BH=35-\dfrac{63}{5}=\dfrac{112}{5}\left(m\right)\)
d) Xét tam giác ABC vuông tại A có:
AM là trung tuyến
\(\Rightarrow AM=\dfrac{1}{2}BC=\dfrac{1}{2}.35=17,5\left(m\right)\)
Áp dụng HTL:
\(AH^2=BH.HC\)
\(\Rightarrow AH=\sqrt{BH.HC}=\sqrt{\dfrac{63}{5}.\dfrac{112}{5}}=\dfrac{84}{5}\left(m\right)\)
Ta có: \(HM=BM-BH=\dfrac{1}{2}BC-BH\)(do AM là trung tuyến ứng với cạnh huyền)
\(\Rightarrow HM=\dfrac{1}{2}.35-\dfrac{63}{5}=\dfrac{49}{10}\left(m\right)\)
\(S_{AHM}=\dfrac{1}{2}.AH.HM=\dfrac{1}{2}.\dfrac{84}{5}.\dfrac{49}{10}=\dfrac{1029}{25}\left(m^2\right)\)
Cho tam giác ABC nhọn có H là trực tâm Gọi D E lần lượt là giao điểm của BH với AC ,CH với AB Chứng minh rằng tam giác AEC và ADB là hai tam giác đồng dạng Cho tam giác ABC nhọn có H là trực tâm Gọi D E lần lượt là giao điểm của BH với AC ,CH với AB Chứng minh rằng tam giác AEC và ADB là hai tam giác đồng dạng
a) Xét ΔAEC vuông tại E và ΔADB vuông tại D có
\(\widehat{BAD}\) chung
Do đó: ΔAEC\(\sim\)ΔADB(g-g)
Cho Tam giác ABC nhọn đường cao AD (à thuộc BC. Gọi H là điểm thuộc đoạn AD sao cho DA.DH=DB.DC BH cắt CA tại E, CH cắt AB tại F. Chứng minh rằng: 1. Hai tam giác DAB, DCH đồng dạng và H là trực tâm của Tam giác ABC 2. AE.AC=AH.AD=AF.AB 3. AH.AD+BH.BE+CH.CF=AB^2+BC^2+AC^2/2 Giúp mình câu 3 với ạ mình cảm ơn
3:
Xét ΔCEH vuông tại E và ΔCFA vuông tại F có
\(\widehat{FCA}\) chung
Do đó: ΔCEH đồng dạng với ΔCFA
=>CE/CF=CH/CA
=>\(CE\cdot CA=CH\cdot CF\)
Xét ΔCDH vuông tại D và ΔCFB vuông tại F có
\(\widehat{FCB}\) chung
Do đó: ΔCDH đồng dạng với ΔCFB
=>CD/CF=CH/CB
=>CD*CB=CH*CF
=>CD*CB=CH*CF=CE*CA
Xét ΔBDH vuông tại D và ΔBEC vuông tại E có
\(\widehat{EBC}\) chung
Do đó: ΔBDH đồng dạng với ΔBEC
=>BD/BE=BH/BC
=>\(BD\cdot BC=BH\cdot BE\)
Xét ΔBDA vuông tại D và ΔBFC vuông tại F có
góc DBA chung
Do đó: ΔBDA đồng dạng với ΔBFC
=>BD/BF=BA/BC
=>BD*BC=BF*BA
=>BD*BC=BF*BA=BH*BE
\(AH\cdot AD+BH\cdot BE=AF\cdot AB+BF\cdot BA=BA^2\)
\(AH\cdot AD+CH\cdot CF=AE\cdot AC+CE\cdot CA=AC^2\)
\(BH\cdot BE+CH\cdot CF=BD\cdot BC+CD\cdot CB=BC^2\)
Do đó: \(2\left(AH\cdot AD+BH\cdot BE+CH\cdot CF\right)=BA^2+AC^2+BC^2\)
=>\(AH\cdot AD+BH\cdot BE+CH\cdot CF=\dfrac{AB^2+AC^2+BC^2}{2}\)
Cho tam giác ABC có 3 góc nhọn , H là trực tâm của tam giác . Chứng minh rằng : AB+AC > AH + BH + CH . Từ đó suy ra chu vi tam giác ABC > 3/2 ( AH + BH + CH )
Help
Tham khảo nha .
Vẽ HD // AC . và HE // AB
Ta có : \(HD//AC\)
và \(BH\perp AC\)( vì H là trực tâm của tam giác ABC )
\(\Rightarrow HD\perp BH\)
\(\Rightarrow DB>BH\)
( Cạnh đối diện với góc vuông)
Chứng minh tương tự như trên ta có :
\(EC//DH\)
\(\Rightarrow CH\perp AB\)
\(\Rightarrow CH\perp CE\)
\(\Rightarrow EC>CH\)(Cạnh đối góc vuông)
Mặt khác ta có :
\(HD//AE\)
\(HE//DA\)
\(\Rightarrow\)Tứ giác AEHD là hình bình hành
\(\Rightarrow AD=HE\)
Xét tam giác AEH có :
\(HE+AE>AH\)
\(\Rightarrow AD+AE>AH\)
\(\Leftrightarrow AB+AC=AD+DB+AE+EC\)
\(=\left(AD+AE\right)+DB+EC>AH+BH+CH\)
Chứng minh tương tự ta có :
\(AB+BC>AH+BH+CH\)
\(AC+BC>AH+BH+CH\)
Do đó : \(2\left(AB+BC+AC\right)>3\left(AH+BH+CH\right)\)
\(\Rightarrow AB+BC+AC>\frac{3}{2}\left(AH+BH+CH\right)\)(đpcm)
cho tam giác nhọn ABC . Biết AB = c , BC = a , CA = b và b + c = 2a . chứng minh rằng : 2sinA = sinB + sinC
Cho tam giác ABC nhọn; trực tâm H. Chứng minh: tam giác ABC đều khi và chỉ khi AH/BC=BH/CA=CH/AB
CHo tam giác ABC có ba góc nhọn thỏa mãn điều kiện:
\(\frac{4}{sinB+sinC}=\frac{1}{sinB}+\frac{1}{sinC}\)
Chứng minh rằng tam giác ABC cân
Đặt \(sinB=x\) , \(sinC=y\)
Áp dụng BĐT Cauchy : \(\left(x+y\right)^2\ge4xy\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
Đẳng thức xảy ra khi x = y , hay \(sinB=sinC\Rightarrow\widehat{B}=\widehat{C}\) , suy ra tam giác ABC cân.