Tìm x:
2x (x - 3)+ 4 (x - 3) = 0
tìm x
a) ( 2x - 3 ) * ( x + 1 ) - x ( 2x + 3 ) - 9 = 0'
b) 2x ( x - 3 ) - x - 3 = 0
c) 2x * ( x^2 - 4 ) + 6 ( 4 - x^2)=0
Answer:
\(\left(2x-3\right).\left(x+1\right)-x.\left(2x+3\right)-9=0\)
\(\Rightarrow\left(2x^2+2x-3x-3\right)-2x^2-3x-9=0\)
\(\Rightarrow\left(2x^2-x-3\right)-2x^2-3x-9=0\)
\(\Rightarrow2x^2-x-3-2x^2-3x-9=0\)
\(\Rightarrow\left(2x^2-2x^2\right)-\left(x+3x\right)-\left(3+9\right)=0\)
\(\Rightarrow-4x-12=0\)
\(\Rightarrow x+3=0\)
\(\Rightarrow x=-3\)
\(2x.\left(x-3\right)-x+3=0\) (Sửa đề)
\(\Rightarrow2x.\left(x-3\right)-\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right).\left(2x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\2x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\2x=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{1}{2}\end{cases}}}\)
\(2x.\left(x^2-4\right)+6.\left(4-x^2\right)=0\)
\(\Rightarrow2x.\left(x^2-4\right)-6.\left(x^2-4\right)=0\)
\(\Rightarrow2.\left(x-3\right).\left(x+2\right).\left(x-2\right)=0\)
Trường hợp 1: \(x-3=0\Rightarrow x=3\)
Trường hợp 2: \(x+2=0\Rightarrow x=-2\)
Trường hợp 3: \(x-2=0\Rightarrow x=2\)
BT2: Tìm x 2, 3x(x-4)+2x-8=0 3, 4x(x-3)+x^2-9=0 4, x(x-1)-x^2+3x=0 5, x(2x-1)-2x^2+5x=16
2: \(3x\left(x-4\right)+2x-8=0\)
=>\(3x\left(x-4\right)+2\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(3x+2\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{2}{3}\end{matrix}\right.\)
3: 4x(x-3)+x2-9=0
=>\(4x\left(x-3\right)+\left(x+3\right)\left(x-3\right)=0\)
=>\(\left(x-3\right)\left(4x+x+3\right)=0\)
=>\(\left(x-3\right)\left(5x+3\right)=0\)
=>\(\left[{}\begin{matrix}x-3=0\\5x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{5}\end{matrix}\right.\)
4: \(x\left(x-1\right)-x^2+3x=0\)
=>\(x^2-x-x^2+3x=0\)
=>2x=0
=>x=0
5: \(x\left(2x-1\right)-2x^2+5x=16\)
=>\(2x^2-x-2x^2+5x=16\)
=>4x=16
=>x=4
Tìm x
1) (2x-1)(x+3)(2-x)=0
2)x^3 + x^2 + x + 1 = 0
3) 2x(x-3)+5(x-3) =0
4)x(2x-7)-(4x-14)=0
5) 2x^3 + 3x^2 + 2x + 3 = 0
1) (2x-1)(x+3)(2-x)=0
=>2x-1 =0 hoặc x+3=0 hoặc 2-x=0
=>x=1/2 hoặc x=-3 hoặc x=2
2)x^3 + x^2 + x + 1 = 0
=>.x^2(x+1)+(x+1)=0
=>(x^2+1)(x+1)=0
=>x^2+1=0 hoặc x+1=0
=> x =-1
3) 2x(x-3)+5(x-3) =0
=>(2x+5)(x-3)=0
=>2x+5=0 hoặc x-3=0
=>x=-5/2 hoặc x=3
4)x(2x-7)-(4x-14)=0
=> (x-2)(2x-7)=0
=> x-2 =0 hoặc 2x-7=0
=>x=2 hoặc x=7/2
5)2x^3+3x^2+2x+3=0
=>x^2(2x+3)+2x+3=0
=>(x^2+1)(2x+3)=0
=>x^2+1=0 hoặc 2x+3=0
=> x =-3/2
Tìm x:
1. x(2x-3) - 2x^2 =12
2. 2x(x-3) - 4(x-3)=0
1. \(\Leftrightarrow2x^2-3x-2x^2=12\\ \Leftrightarrow-3x=12\\ \Leftrightarrow x=-4\)
2. \(\Leftrightarrow\left(2x-4\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
1) \(\Rightarrow2x^2-3x-2x^2=12\Rightarrow-3x=12\Rightarrow x=-4\)
2) \(\Rightarrow2\left(x-3\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)
Bài 13: Tìm x biết: a) (x-2)(x-3)-D0. b) (x-3)(x-4)-0. c) (x-7)(6-x)=0. d) (x-3)(x-13)=0. The Bài 14: Tìm x biết: a) (12-x)(2-x)=0. b) (x-33)(11-x)=0. c) (21-x)(12-x)=0. d) (50-x)(x-150) =0. Bài 15: Tìm x biết: a) 2x +x = 45. b) 2x +7x = 918. c) 2x+3x 60+5. d) 11x+22x 33.2.
\(1,\)
\(2x\left(x-3\right)-\left(3-x\right)=0\)
\(\Leftrightarrow2x\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=3\end{cases}}\)
\(2,\)
\(3x\left(x+5\right)-6\left(x+5\right)=0\)
\(\Leftrightarrow\left(3x-6\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-6=0\\x+5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)
\(3,\)
\(x^4-x^2=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
\(4,\)
\(x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
\(5,\)
\(x\left(x+6\right)-10\left(x-6\right)=0\)
\(\Leftrightarrow x^2+6x-10x+60=0\)
\(\Leftrightarrow x^2-4x+60=0\)
\(\Leftrightarrow x^2-4x+4+56=0\)
\(\Leftrightarrow\left(x-2\right)^2=-56\)(Vô lý)
=> Phương trình vô nghiệm
Tìm x
(2x-3).(x+1)-2x^2+6x=0
(X^2-x+1).(x-3)-x^3+4x^2=0
(X^2-2).(x^2+2)-x^4-2x+5=0
(X-3).(x^2-3x+2)-(x^2-2x-7).(x-2)+2x^2-2x=0
( 2x - 3 )( x + 1 ) - 2x2 + 6x = 0
<=> 2x2 - x - 3 - 2x2 + 6x = 0
<=> 5x - 3 = 0
<=> 5x = 3
<=> x = 3/5
( x2 - x + 1 )( x - 3 ) - x3 + 4x2 = 0
<=> x3 - 4x2 + 4x - 3 - x3 + 4x2 = 0
<=> 4x - 3 = 0
<=> 4x = 3
<=> x = 3/4
( x2 - 2 )( x2 + 2 ) - x4 - 2x + 5 = 0
<=> ( x2 )2 - 4 - x4 - 2x + 5 = 0
<=> x4 + 1 - x4 - 2x = 0
<=> 1 - 2x = 0
<=> 2x = 1
<=> x = 1/2
( x - 3 )( x2 - 3x + 2 ) - ( x2 - 2x - 7 )( x - 2 ) + 2x2 - 2x = 0
<=> x3 - 6x2 + 11x - 6 - ( x3 - 4x2 - 3x + 14 ) + 2x2 - 2x = 0
<=> x3 - 6x2 + 11x - 6 - x3 + 4x2 + 3x - 14 + 2x2 - 2x = 0
<=> 12x - 20 = 0
<=> 12x = 20
<=> x = 20/12 = 5/3
a, \(\left(2x-3\right)\left(x+1\right)-2x^2+6x=0\)
\(\Leftrightarrow2x^2+2x-3x-3-2x^2+6x=0\Leftrightarrow5x-3=0\Leftrightarrow x=\frac{3}{5}\)
b, \(\left(x^2-x+1\right)\left(x-3\right)-x^3+4x^2=0\)
\(\Leftrightarrow x^3-3x^2-x^2+3x+x-3-x^3+4x^2=0\Leftrightarrow4x-3=0\Leftrightarrow x=\frac{3}{4}\)
c ; d tương tự nhé !
bài 7 tìm x
1,x(x+3)-5(x+3)=0 2,5x(x-1)=x-1
3,(x+1)=(x+1)\(^2\) 4,x(2x-3)-2(3-2x)=0
5,\(\left(x-2\right)^2-4=0\) 6,\(36x^2=49\)
7,\(2x\left(x-6\right)-x+6=0\) 8,\(3x\left(2x-1\right)-24x+12=0\)
9,\(x^2-6x+8=0\) 10,\(x^2+2x-15=0\)
1: =>(x+3)(x-5)=0
=>x=5 hoặc x=-3
2: =>(x-1)(5x-1)=0
=>x=1/5 hoặc x=1
5: =>(x-4)*x=0
=>x=0 hoặc x=4
10: =>(x+5)(x-3)=0
=>x=3 hoặc x=-5
9: =>(x-2)(x-4)=0
=>x=2 hoặc x=4
7: =>(x-6)(2x-1)=0
=>x=1/2 hoặc x=6
8: =>(2x-1)(3x-12)=0
=>x=4 hoặc x=1/2
tìm x: a)x^4-2x^3+5x^2-10x=0
b)(3x+5)^2=(2x-2)^2
. c)x^3–2x^2+x=0
. d)x^2(x-1)-4x^2+8x-4=0
\(a,x^4-2x^3+5x^2-10x=0\\ \Leftrightarrow x^3\left(x-2\right)+5x\left(x-2\right)=0\\ \Leftrightarrow x\left(x^2+5\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x^2+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x\in\varnothing\left(x^2+5>0\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(b,\left(3x+5\right)^2=\left(2x-2\right)^2\\ \Leftrightarrow\left(3x+5\right)^2-\left(2x-2\right)^2=0\\ \Leftrightarrow\left(3x+5+2x-2\right)\left(3x+5-2x+2\right)=0\\ \Leftrightarrow\left(5x+3\right)\left(x+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{5}\\x=-7\end{matrix}\right.\)
\(c,x^3-2x^2+x=0\\ \Leftrightarrow x\left(x-1\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
\(d,x^2\left(x-1\right)-4x^2+8x-4=0\\ \Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
a) \(x^4-2x^3+5x^2-10x=0\\ \Rightarrow\left(x^4-2x^3\right)+\left(5x^2-10x\right)=0\\ \Rightarrow x^3\left(x-2\right)+5x\left(x-2\right)=0\\ \Rightarrow\left(x^3+5x\right)\left(x-2\right)=0\\ \Rightarrow x\left(x^2+5\right)\left(x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x^2+5=0\\x-2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\sqrt{5}\\x=2\end{matrix}\right.\)
Vậy \(x=\left\{-\sqrt{5};0;\sqrt{5};2\right\}\)
b) \(\left(3x+5\right)^2=\left(2x-2\right)^2\\ \Rightarrow\left[{}\begin{matrix}3x+5=2x-2\\3x+5=-2x+2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-7\\x=-\dfrac{3}{5}\end{matrix}\right.\)
c) \(x^3-2x^2+x=0\\ \Rightarrow x\left(x^2-2x+1\right)=0\\ \Rightarrow x\left(x-1\right)^2=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\\left(x-1\right)^2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
vậy ...
d) \(x^2\left(x-1\right)-4x^2+8x-4=0\\ x^2\left(x-1\right)-\left(4x^2-8x+4\right)=0\\ x^2\left(x-1\right)-\left(2x-2\right)^2=0\\ \Rightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Rightarrow\left(x-1\right)\left[x^2-4\left(x-1\right)\right]=0\\ \Rightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Rightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
a: Ta có: \(x^4-2x^3+5x^2-10x=0\)
\(\Leftrightarrow x\left(x^3-2x^2+5x-10\right)=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
b:Ta có: \(\left(3x+5\right)^2=\left(2x-2\right)^2\)
\(\Leftrightarrow\left(3x+5\right)^2-\left(2x-2\right)^2=0\)
\(\Leftrightarrow\left(3x+5-2x+2\right)\left(3x+5+2x-2\right)=0\)
\(\Leftrightarrow\left(x+7\right)\left(5x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=-\dfrac{3}{5}\end{matrix}\right.\)
Tìm x: a)(2x+1)(1-2x)+(1-2x)^2=18
b) 2(x+1)^2-(x-3)(x+3)-(x-4)^2=0
c) (x-5)^2-x(x-4)=9
d) (x-5)^2+(x-4)(1-x)=0
a) (2x + 1)(1 - 2x) + (1 - 2x)2 = 18
= ( 1 - 2x) \(\left[\left(2x+1+1-2x\right)\right]\) = 18
= 2(1 - 2x) - 18 = 0
= 2 - 4x - 18 = 0
= -16 - 4x = 0
= -4x = 16
= x = \(\dfrac{16}{-4}=-4\)
b) 2(x + 1)2 -(x - 3)(x + 3) - (x - 4)2 = 0
= 2 (x2 + 2x + 1) - (x2 - 9) - (x2 - 8x + 16) = 0
= 2x2 + 4x + 2 - x2 + 9 - x2 + 8x - 16 = 0
= 12x - 5 = 0
= 12x = 5
= x = \(\dfrac{5}{12}\)
c) (x - 5)2 - x(x - 4) = 9
= x2 - 10x + 25 - x2 + 4x - 9 = 0
= -6x + 16 = 0
= -6x = -16
= x = \(\dfrac{-16}{-6}=\dfrac{8}{3}\)
d) (x - 5)2 + (x - 4)(1 - x)
= x2 - 10x + 25 + 5x - x2 - 4 = 0
= -5x + 21 = 0
= -5x = -21
= x = \(\dfrac{-21}{-5}=\dfrac{21}{5}\)
Chúc bạn học tốt