Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
eren
Xem chi tiết
Thịnh Gia Vân
6 tháng 1 2021 lúc 20:15

Úi gời cơi cộng chấm chấm chấm :)))

+ Ta có: \(A=2+2^2+2^3+2^4+...+2^{2010}\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=2.3+2^3.3+...+2^{2009}.3\)

\(A=3\left(2+2^3+...+2^{2010}\right)⋮3\)

-> Đpcm

+ Ta có: \(A=2+2^2+2^3+2^4+...+2^{2010}\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+....+2^{2008}\left(1+2+2^2\right)\)

\(A=2.7+2^4.7+...+2^{2008}.7\)

\(A=7\left(2+2^4+...+2^{2008}\right)⋮7\)

-> Đpcm

phạm hải nam
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 12 2023 lúc 19:23

\(A=2^1+2^2+...+2^{2010}\)

\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2+2^2+2^3+...+2^{2010}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{2008}\right)⋮7\)

Phongg
24 tháng 12 2023 lúc 19:31

 + Chứng minh chia hết cho 3  
 \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(=\left(1+2\right)\left(2+2^3+...+2^{2009}\right)\)
\(=3\left(2+2^3+...+2^{2009}\right)\)
Vì \(3\) ⋮ \(3\)
⇒ \(A\) ⋮ \(3\)



+ Chứng minh chia hết cho 7
\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\left(2+2^4+...+2^{2008}\right)\)
\(=7\left(2+2^4+...+2^{2008}\right)\)
Vì \(7\) ⋮ \(7\)
⇒ \(A\) ⋮ \(7\)

dảk dảk bruh bruh lmao
24 tháng 12 2023 lúc 19:32

A=2\(^1\)+2\(^2\)+...+2\(^{2010}\)

=(2\(^1\)+2\(^2\))+(2\(^3\)+2\(^4\))+...+(2\(^{2009}\)+2\(^{2010}\))

=2(1+2)+2\(^3\)(1+2)+...+2\(^{2009}\)(1+2)

=3(2+2\(^3\)+...+2\(^{2009}\))⋮3

Nguyễn Trần Bảo An
Xem chi tiết
Nguyễn Đức Trí
4 tháng 8 2023 lúc 12:44

a) \(4^{13}+4^{14}+4^{15}+4^{16}=4^{13}\left(1+4\right)+4^{14}\left(1+4\right)=4^{13}.5+4^{14}.5=5\left(4^{13}+4^{14}\right)⋮5\Rightarrow dpcm\)

c) \(2^{10}+2^{11}+2^{12}+2^{13}+2^{14}+2^{15}\)

\(=2^{10}\left(1+2+2^2\right)+2^{13}\left(1+2+2^2\right)\)

\(=2^{10}.7+2^{13}.7=7\left(2^{10}+2^{13}\right)⋮7\Rightarrow dpcm\)

Câu c bạn xem lại đê

eren
Xem chi tiết
Thịnh Gia Vân
6 tháng 1 2021 lúc 20:53

Trời trời, mình làm cho bạn câu khi nãy bạn phải biết vận dụng cho mấy bài sau chứ, câu này giống i lột câu khi nãy luôn ấy, nhưng thôi, khá rảnh nên:vv

+Ta có: \(B=3+3^2+3^3+3^4+...+3^{2010}\)

-> \(B=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

-> \(B=3.4+3^3.4+...+3^{2009}.4\)

-> \(B=4\left(3+3^3+...+3^{2009}\right)⋮4\)

-> Đpcm 

+ Ta có: \(B=3+3^2+3^3+3^4+....+3^{2010}\)

-> \(B=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{2008}\left(1+3+3^2\right)\)

-> \(B=3.13+3^4.13+...+.3^{2008}.13\)

-> \(B=13\left(3+3^4+...+3^{2008}\right)⋮13\)

-> Đpcm

Nguyễn Lê Phước Thịnh
6 tháng 1 2021 lúc 23:54

Ta có: \(B=3^1+3^2+3^3+3^4+...+3^{2010}\)

\(=3^1\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+...+3^{2009}\cdot\left(1+3\right)\)

\(=\left(1+3\right)\cdot\left(3^1+3^3+...+3^{2009}\right)\)

\(=4\cdot\left(3+3^3+...+3^{2009}\right)⋮4\)(đpcm)

Ta có: \(B=3^1+3^2+3^3+3^4+...+3^{2010}\)

\(=3\left(1+3+3^2\right)+3^4\cdot\left(1+3+3^2\right)+...+3^{2008}\cdot\left(1+3+3^2\right)\)

\(=\left(1+3+3^2\right)\cdot\left(3+3^4+...+3^{2008}\right)\)

\(=13\cdot\left(3+3^4+...+3^{2008}\right)⋮13\)(đpcm)

Nguyễn Thị Nguyệt Minh
Xem chi tiết
Phan Tiến Đạt
Xem chi tiết
Tạ Lương Minh Hoàng
28 tháng 12 2015 lúc 19:19

a)116+115=(..................1)+(..................1)=..........................2

Vì có chữ số tận cùng là 2 nên chia hết cho 4

Nhọ Nồi
28 tháng 12 2015 lúc 19:25

Bài này thì chắc phải dùng đồng dư -_-

a) Ta có: 

11 đồng dư với -1 (mod 4) => 115 đồng dư với (-1)5  = -1 (mod 4) => 115 + 1 chia hết cho 4 

=> 116 đồng dư với (-1)6 (mod 4)

=> 116 đồng dư với 1 (mod 4)

=> 116 - 1 chia hết cho 4

=> (116 - 1) + (115 + 1) chia hết cho 4

=> 116 + 115 chia hết cho 4

BEST GAMING
Xem chi tiết
Trần Quốc Việt
2 tháng 4 2018 lúc 17:23

... tìm số dư khi chia hết???

nếu nó chia hết thì số dư bằng 0 rồi

BEST GAMING
2 tháng 4 2018 lúc 20:03

bạn nếu cách làm đi

Ngô Tiến Thăng
Xem chi tiết
Minh Hiếu
13 tháng 10 2023 lúc 20:04

\(=\left(1+2+2^2+2^3\right)+2^4\left(1+2+2^2+2^3\right)+....+2^{92}\left(1+2+2^2+2^3\right)\)

\(=15+15.2^4+...+15.2^{92}\)

\(=15\left(1+2^4+...+2^{92}\right)⋮15\left(đpcm\right)\)

Ngô Tiến Thăng
13 tháng 10 2023 lúc 20:03

giúp mình đi :))

 

Nguyễn Thị Thu Thủy
13 tháng 10 2023 lúc 20:15

kobtlmm

 

Xem chi tiết
Lê Thị My
12 tháng 10 lúc 20:45

Ngu xi