2 + 2 mũ 2 + 2 mũ 4 + ......... chấm nhiều nó mặn...+ 2 mũ 2004
CMR : B chia hết cho 15
chứng minh a = 2 mũ 1 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 + chấm chấm chấm + 2 mũ 2010 chia hết cho 3 và 7
Úi gời cơi cộng chấm chấm chấm :)))
+ Ta có: \(A=2+2^2+2^3+2^4+...+2^{2010}\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(A=2.3+2^3.3+...+2^{2009}.3\)
\(A=3\left(2+2^3+...+2^{2010}\right)⋮3\)
-> Đpcm
+ Ta có: \(A=2+2^2+2^3+2^4+...+2^{2010}\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+....+2^{2008}\left(1+2+2^2\right)\)
\(A=2.7+2^4.7+...+2^{2008}.7\)
\(A=7\left(2+2^4+...+2^{2008}\right)⋮7\)
-> Đpcm
chứng minh a = 2 mũ 1 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 + chấm chấm chấm + 2 mũ 2010 chia hết cho 3 và bảy
\(A=2^1+2^2+...+2^{2010}\)
\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{2009}\right)⋮3\)
\(A=2+2^2+2^3+...+2^{2010}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{2008}\right)⋮7\)
+ Chứng minh chia hết cho 3
\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(=\left(1+2\right)\left(2+2^3+...+2^{2009}\right)\)
\(=3\left(2+2^3+...+2^{2009}\right)\)
Vì \(3\) ⋮ \(3\)
⇒ \(A\) ⋮ \(3\)
+ Chứng minh chia hết cho 7
\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\left(2+2^4+...+2^{2008}\right)\)
\(=7\left(2+2^4+...+2^{2008}\right)\)
Vì \(7\) ⋮ \(7\)
⇒ \(A\) ⋮ \(7\)
A=2\(^1\)+2\(^2\)+...+2\(^{2010}\)
=(2\(^1\)+2\(^2\))+(2\(^3\)+2\(^4\))+...+(2\(^{2009}\)+2\(^{2010}\))
=2(1+2)+2\(^3\)(1+2)+...+2\(^{2009}\)(1+2)
=3(2+2\(^3\)+...+2\(^{2009}\))⋮3
a) \(4^{13}+4^{14}+4^{15}+4^{16}=4^{13}\left(1+4\right)+4^{14}\left(1+4\right)=4^{13}.5+4^{14}.5=5\left(4^{13}+4^{14}\right)⋮5\Rightarrow dpcm\)
c) \(2^{10}+2^{11}+2^{12}+2^{13}+2^{14}+2^{15}\)
\(=2^{10}\left(1+2+2^2\right)+2^{13}\left(1+2+2^2\right)\)
\(=2^{10}.7+2^{13}.7=7\left(2^{10}+2^{13}\right)⋮7\Rightarrow dpcm\)
Câu c bạn xem lại đê
chứng minh b = 3 mũ 1 + 3 mũ 2 + 3 mũ 3 + 3 mũ 4 + chấm chấm chấm + 3 mũ 2010 chia hết cho 4 và 13
Trời trời, mình làm cho bạn câu khi nãy bạn phải biết vận dụng cho mấy bài sau chứ, câu này giống i lột câu khi nãy luôn ấy, nhưng thôi, khá rảnh nên:vv
+Ta có: \(B=3+3^2+3^3+3^4+...+3^{2010}\)
-> \(B=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)
-> \(B=3.4+3^3.4+...+3^{2009}.4\)
-> \(B=4\left(3+3^3+...+3^{2009}\right)⋮4\)
-> Đpcm
+ Ta có: \(B=3+3^2+3^3+3^4+....+3^{2010}\)
-> \(B=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{2008}\left(1+3+3^2\right)\)
-> \(B=3.13+3^4.13+...+.3^{2008}.13\)
-> \(B=13\left(3+3^4+...+3^{2008}\right)⋮13\)
-> Đpcm
Ta có: \(B=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=3^1\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+...+3^{2009}\cdot\left(1+3\right)\)
\(=\left(1+3\right)\cdot\left(3^1+3^3+...+3^{2009}\right)\)
\(=4\cdot\left(3+3^3+...+3^{2009}\right)⋮4\)(đpcm)
Ta có: \(B=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=3\left(1+3+3^2\right)+3^4\cdot\left(1+3+3^2\right)+...+3^{2008}\cdot\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right)\cdot\left(3+3^4+...+3^{2008}\right)\)
\(=13\cdot\left(3+3^4+...+3^{2008}\right)⋮13\)(đpcm)
Câu1 :Cho ba STN a, b, c không chia hết cho 4. Khi chia 4 được số dư khác nhau. Chứng minh a+b+c không chia hết cho 4.
Câu 2: Chứng tỏ rằng :
a) Số có dạng aaa aaa chia hết cho 7 và 37.
b) a+3.b chia hết cho 2 với a+b chia hết cho 2 ( a,b thuộc N )
Câu 3 :Chứng tỏ rằng :
a) 81 mũ 7 - 27 mũ 9 - 9 mũ 13 chia hết cho 45.
b) 16 mũ 5 + 2 mũ 15 chia hết cho 33
c) 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 + .....+ 2 mũ 60 chia hết cho 15 và 21.
BÀI 2: Chứng minh
a) 11 mũ 6 + 11 mũ 5 chia hết cho 4
b) 7 mũ 15 - 7 mũ 14 chia hết cho 42
c) A = 2 + 2 mũ 2 + 2 mũ 3 +.......+ 2 mũ 60 chia hết cho 7
a)116+115=(..................1)+(..................1)=..........................2
Vì có chữ số tận cùng là 2 nên chia hết cho 4
Bài này thì chắc phải dùng đồng dư -_-
a) Ta có:
11 đồng dư với -1 (mod 4) => 115 đồng dư với (-1)5 = -1 (mod 4) => 115 + 1 chia hết cho 4
=> 116 đồng dư với (-1)6 (mod 4)
=> 116 đồng dư với 1 (mod 4)
=> 116 - 1 chia hết cho 4
=> (116 - 1) + (115 + 1) chia hết cho 4
=> 116 + 115 chia hết cho 4
cho s = 1 + 5 + 5 mũ 2 + 5 mũ 3 + 5 mũ 4 + chấm chấm chấm + 5 mũ 2010 tìm số dư khi chia hết cho 2 cho 10 cho 13
... tìm số dư khi chia hết???
nếu nó chia hết thì số dư bằng 0 rồi
hãy chứng minh 1+2+2 mũ 2+2 mũ 3+ 2 mũ 4+ 2 mũ 5+ 2 mũ 6+ 2 mũ 7....... 2 mũ 95 chia hết cho 15
\(=\left(1+2+2^2+2^3\right)+2^4\left(1+2+2^2+2^3\right)+....+2^{92}\left(1+2+2^2+2^3\right)\)
\(=15+15.2^4+...+15.2^{92}\)
\(=15\left(1+2^4+...+2^{92}\right)⋮15\left(đpcm\right)\)
Bài 1: Tính
a, B = 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 + ... + 2 mũ 100
b, C = 1 + 3 + 3 mũ 2 + 3 mũ 3 + .... + 3 mũ 2003
c, D = 1 + 5 + 5 mũ 2 + 5 mũ 3 + ... 5 mũ 1997
d, E = 4 + 4 mũ 2 + 4 mũ 3 + ... + 4 mũ n
Bài 2: Tìm a
a, ( 2a + 27 ) chia hết 2a + 1
b, ( 5a + 28 ) chia hết a + 2
c, ( 3a + 15 ) chia hết ( 3a - 1 )