`a,b,c\ge0`
`a^2+b^2+c^2=2`
Tìm Max `P=a/(1+bc)+b/(1+ac)+c/(1+ab)`
`a,b,c\ge0`
`a^2+b^2+c^2=2`
Tìm Max `P=(a^2)/(a^2+bc+1)+(b^2)/(b^2+ac+1)+(c^2)/(c^2+ab+1)`
Trước hết ta chứng minh BĐT sau:
\(x^2+y^2+z^2+2yz=x^2+\left(y+z\right)^2\ge2x\left(y+z\right)\)
Không mất tính tổng quát, giả sử \(c=min\left\{a;b;c\right\}\)
Ta sẽ chứng minh \(\frac{c^2}{c^2+ab+1}\le\frac{c}{a+b+c}\) (1)
Thật vậy, BĐT tương đương: \(\frac{2c^2}{2c^2+2ab+a^2+b^2+c^2}\le\frac{c}{a+b+c}\)
\(\Leftrightarrow2c^2\left(a+b+c\right)\le c\left(a^2+b^2+2ab+3c^2\right)\)
\(\Leftrightarrow c\left(a^2+b^2+2ab+c^2-2ac-2bc\right)\ge0\)
\(\Leftrightarrow c\left(a+b-c\right)^2\ge0\) (luôn đúng với mọi số thực không âm)
Đồng thời áp dụng hệ quả đã chứng minh ban đầu:
\(\frac{a^2}{a^2+bc+1}=\frac{2a^2}{2a^2+\left(2bc+a^2+b^2+c^2\right)}\le\frac{2a^2}{2a^2+2a\left(b+c\right)}=\frac{a}{a+b+c}\) (2)
Tương tự ta được: \(\frac{b^2}{b^2+ac+1}\le\frac{b}{a+b+c}\) (3)
Cộng vế với vế (1); (2); (3) \(\Rightarrow P\le1\)
Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(0;1;1\right)\) và hoán vị
Giờ bận ăn cơm, có gì buổi tối bài nào làm được thì mình làm tiếp
Cho \(a;b;c\ge0:a^2+b^2+c^2=1\)
CMR: \(\dfrac{c}{1+ab}+\dfrac{b}{1+ac}+\dfrac{a}{1+bc}\ge1\)
\(c\left(1+ab\right)\le c\left(1+\dfrac{a^2+b^2}{2}\right)=c\left(1+\dfrac{1-c^2}{2}\right)=1-\dfrac{1}{2}\left(c-1\right)^2\left(c+2\right)\le1\)
\(\Rightarrow c^2\left(1+ab\right)\le c\Rightarrow\dfrac{c}{1+ab}\ge c^2\)
Hoàn toàn tương tự ta có: \(\dfrac{a}{1+bc}\ge a^2\) ; \(\dfrac{b}{1+ac}\ge b^2\)
Cộng vế: \(VT\ge a^2+b^2+c^2=1\) (đpcm)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị
Cách 2:
Áp dụng BĐT Bunhiacopxky:
\(\text{VT}[a(1+bc)+b(1+ac)+c(1+ab)]\geq (a+b+c)^2\)
\(\Rightarrow \text{VT}\geq \frac{(a+b+c)^2}{a+b+c+3abc}\)
Ta sẽ CM:
\(\frac{(a+b+c)^2}{a+b+c+3abc}\geq 1\)
\(\Leftrightarrow 1+2(ab+bc+ac)\geq a+b+c+3abc\)
Vì $a^2+b^2+c^2=1\Rightarrow a,b,c\leq 1$
$\Rightarrow (a-1)(b-1)(c-1)\leq 0$
$\Leftrightarrow 1+ ab+bc+ac\geq a+b+c+abc(1)$
Áp dụng BĐT AM-GM:
$ab+bc+ac\geq 3\sqrt[3]{a^2b^2c^2}\geq 3\sqrt[3]{a^2b^2c^2.abc}=3abc\geq 2abc(2)$
Từ $(1);(2)\Rightarrow 1+2(ab+bc+ac)\geq a+b+c+3abc$
Ta có đpcm
Dấu "=" xảy ra khi $(a,b,c)=(1,0,0)$ và hoán vị.
Cho \(\left\{{}\begin{matrix}a;b;c>0\\ab+bc+ac=1\end{matrix}\right.\) Tìm max của \(P=\dfrac{1-a^2}{1+a^2}+\dfrac{1-b^2}{1+b^2}+\dfrac{1-c^2}{1+c^2}\)
Cái c là \(\dfrac{2}{\sqrt{1+c^2}}\) ạ
\(P=\dfrac{2-\left(1+a^2\right)}{1+a^2}+\dfrac{2-\left(1+b^2\right)}{1+b^2}+\dfrac{2}{\sqrt{1+c^2}}\)
\(P=2\left(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}+\dfrac{1}{\sqrt{1+c^2}}\right)-2\)
Từ điều kiện \(ab+bc+ca=1\), đặt \(\left\{{}\begin{matrix}a=tanx\\b=tany\\c=tanz\end{matrix}\right.\) với \(x+y+z=\dfrac{\pi}{2}\)
Xét \(Q=\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}+\dfrac{1}{\sqrt{1+c^2}}=\dfrac{1}{1+tan^2x}+\dfrac{1}{1+tan^2y}+\dfrac{1}{\sqrt{1+tan^2z}}\)
\(Q=cos^2x+cos^2y+cosz=1+\dfrac{1}{2}\left(cos2x+cos2y\right)+cosz\)
\(=1+cos\left(x+y\right)cos\left(x-y\right)+cosz\le1+cos\left(x+y\right)+cosz\)
\(=1+cos\left(\dfrac{\pi}{2}-z\right)+cosz=1+sinz+cosz=1+\sqrt{2}sin\left(z+\dfrac{\pi}{4}\right)\le1+\sqrt{2}\)
\(\Rightarrow P\le2\left(1+\sqrt{2}\right)-2=2\sqrt{2}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=y=\dfrac{\pi}{8}\\z=\dfrac{\pi}{4}\end{matrix}\right.\) \(\Rightarrow\left(a;b;c\right)=\left(\sqrt{2}-1;\sqrt{2}-1;1\right)\)
Cho a, b, c > 0 và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\) . Tìm MAX của :
A= \(\dfrac{1}{\sqrt{a^2-ab+b^2}}+\dfrac{1}{\sqrt{b^2-bc+c^2}}+\dfrac{1}{\sqrt{c^2-ac+a^2}}\)
\(\dfrac{1}{\sqrt{a^2-ab+b^2}}< =\dfrac{1}{\sqrt{2ab-ab}}=\dfrac{1}{\sqrt{ab}}\)
\(\sqrt{\dfrac{1}{b^2-bc+c^2}}< =\dfrac{1}{\sqrt{bc}};\sqrt{\dfrac{1}{c^2-ac+c^2}}< =\dfrac{1}{\sqrt{ac}}\)
=>P<=1/a+1/b+1/c=3
Dấu = xảy ra khi a=b=c=1
1. Cho \(a,b,c>0\) và \(ab+bc+ca=abc\). Chứng minh rằng:
\(\dfrac{1}{a+3b+2c}+\dfrac{1}{b+3c+2a}+\dfrac{1}{c+3a+2b}\le\dfrac{1}{6}\)
2. Cho \(a,b\ge0\) và \(a+b=2\) Tìm Max
\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+20ab\)
Có \(ab+bc+ac=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
Áp dụng các bđt sau:Với x;y;z>0 có: \(\dfrac{1}{x+y+z}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\) và \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
Có \(\dfrac{1}{a+3b+2c}=\dfrac{1}{\left(a+b\right)+\left(b+c\right)+\left(b+c\right)}\le\dfrac{1}{9}\left(\dfrac{1}{a+b}+\dfrac{2}{b+c}\right)\)\(\le\dfrac{1}{9}.\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{b}+\dfrac{2}{c}\right)=\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{3}{b}+\dfrac{2}{c}\right)\)
CMTT: \(\dfrac{1}{b+3c+2a}\le\dfrac{1}{36}\left(\dfrac{1}{b}+\dfrac{3}{c}+\dfrac{2}{a}\right)\)
\(\dfrac{1}{c+3a+2b}\le\dfrac{1}{36}\left(\dfrac{1}{c}+\dfrac{3}{a}+\dfrac{2}{b}\right)\)
Cộng vế với vế => \(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{36}.6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}\)
Dấu = xảy ra khi a=b=c=3
Có \(a+b=2\Leftrightarrow2\ge2\sqrt{ab}\Leftrightarrow ab\le1\)
\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+2ab\)
\(=9a^2b^2+6\left(a^3+b^3\right)+4ab+5ab\left(a+b\right)+20ab\)
\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+4ab+5ab\left(a+b\right)+20ab\)
\(=9a^2b^2+48-18ab.2+4ab+5.2.ab+20ab\)
\(=9a^2b^2-2ab+48\)
Đặt \(f\left(ab\right)=9a^2b^2-2ab+48;ab\le1\), đỉnh \(I\left(\dfrac{1}{9};\dfrac{431}{9}\right)\)
Hàm đồng biến trên khoảng \(\left[\dfrac{1}{9};1\right]\backslash\left\{\dfrac{1}{9}\right\}\)
\(\Rightarrow f\left(ab\right)_{max}=55\Leftrightarrow ab=1\)
\(\Rightarrow E_{max}=55\Leftrightarrow a=b=1\)
Vậy...
2,
\(ab\le\dfrac{1}{4}\left(a+b\right)^2=1\Rightarrow0\le ab\le1\)
\(E=9a^2b^2+6\left(a^3+b^3\right)+5ab\left(a+b\right)+24ab\)
\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+5ab\left(a+b\right)+24ab\)
\(=9a^2b^2-2ab+48\)
Đặt \(ab=x\Rightarrow0\le x\le1\)
\(E=9x^2-2x+48=\left(x-1\right)\left(9x+7\right)+55\le55\)
\(E_{max}=55\) khi \(x=1\) hay \(a=b=1\)
Cho `a^2+b^2+c^2=k\ge1`
Chứng minh:
a)`k+2bc\ge2a(b+c)`
b)`(a+b+c)^2\le2k(1+bc)^2`
c)`a+b+c+2/k abc\le\sqrt{2k}`
Áp dụng để làm:
`a,b,c\ge0`
`a^2+b^2+c^2=1`
Tìm Min,Max `P=a/(1+bc)+b/(1+ca)+c/(1+ab)`
a/ \(k+2bc=a^2+\left(b^2+c^2+2bc\right)=a^2+\left(b+c\right)^2\ge2a\left(b+c\right)\)
Đẳng thức xảy ra khi \(b+c=a\)
b/ BĐT cần chứng minh tương đương:
\(k+2\left(ab+bc+ca\right)\le2k\left(1+2bc+2b^2c^2\right)\)
\(\Leftrightarrow4kb^2c^2+4kbc+k\ge2a\left(b+c\right)+2bc\)
Điều này hiển nhiên đúng do: \(k\ge1\Rightarrow4kbc\ge4bc\)
\(\Rightarrow4kb^2c^2+4kbc+k\ge4bc+k=2bc+\left(k+2bc\right)\ge2bc+2a\left(b+c\right)\)
c/ BĐT đã cho sai.
Phản ví dụ: giả sử cho \(a^2+b^2+c^2=2\)
BĐT trở thành \(a+b+c+abc\le2\)
Nhưng với \(a=b=c=\sqrt{\frac{2}{3}}\) thì \(a+b+c+abc=\frac{11\sqrt{6}}{9}>2\)
Bài tập áp dụng:
Áp dụng BĐT ở câu b:
\(\left(a+b+c\right)^2\le2k\left(1+bc\right)^2\Rightarrow\frac{a^2}{\left(a+b+c\right)^2}\ge\frac{a^2}{2k\left(1+bc\right)^2}\)
\(\Leftrightarrow\frac{a}{1+bc}\le\sqrt{2k}.\frac{a}{a+b+c}=\sqrt{2}.\frac{a}{a+b+c}\)
Hoàn toàn tương tự, ta có:
\(\frac{b}{1+ca}\le\sqrt{2}.\frac{b}{a+b+c}\) ; \(\frac{c}{1+ca}\le\sqrt{2}.\frac{c}{a+b+c}\)
Cộng vế với vế: \(P\le\sqrt{2}.\frac{a+b+c}{a+b+c}=\sqrt{2}\)
\(P_{max}=\sqrt{2}\)khi \(\left(a;b;c\right)=\left(0;\frac{\sqrt{2}}{2};\frac{\sqrt{2}}{2}\right)\) và hoán vị
Lại có:
\(a\left(1+bc\right)\le a\left(1+\frac{b^2+c^2}{2}\right)=a\left(\frac{3-a^2}{2}\right)-1+1=-\frac{1}{2}\left(a-1\right)^2\left(a+2\right)+1\le1\)
\(\Rightarrow a^2\left(1+bc\right)\le a\Rightarrow\frac{a}{1+bc}\ge a^2\)
Tương tự ta có: \(\frac{b}{1+ca}\ge b^2\) ; \(\frac{c}{1+ab}\ge c^2\)
Cộng vế với vế: \(P\ge1\Rightarrow P_{min}=1\) khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị
c/
Nếu dấu là trừ:
BĐT cần chứng minh tương đương:
\(\left(a+b+c-\frac{2}{k}abc\right)^2\le2k\)
Ta có:
\(VT=\left[\left(a+b\right).1+c\left(1-\frac{2}{k}ab\right)\right]^2\)
\(VT\le\left[\left(a+b\right)^2+c^2\right]\left[1+\left(1-\frac{2}{k}ab\right)^2\right]\)
\(VT\le\left(k+2ab\right)\left(2-\frac{4}{k}ab+\frac{4a^2b^2}{k^2}\right)\)
\(VT\le2k-\frac{4}{k}a^2b^2+\frac{8}{k^2}\left(ab\right)^3\)
Do đó ta chỉ cần chứng minh: \(2k-\frac{4}{k}\left(ab\right)^2+\frac{8}{k^2}\left(ab\right)^3\le2k\)
\(\Leftrightarrow\frac{1}{k}\left(ab\right)^2-\frac{2}{k^2}\left(ab\right)^3\ge0\)
\(\Leftrightarrow\frac{1}{k}\left(ab\right)^2\left(1-\frac{2ab}{k}\right)\ge0\)
Từ giả thiết \(k=a^2+b^2+c^2\ge a^2+b^2\ge2ab\Rightarrow\frac{2ab}{k}\le1\)
\(\Rightarrow1-\frac{2ab}{k}\ge0\Rightarrow\frac{1}{k}\left(ab\right)^2\left(1-\frac{2ab}{k}\right)\ge0\) (đpcm)
cho 3 số thực dương a,b,c t/m ab+bc+ac=3 tìm max \(\frac{1}{a^2+b^2+1}+\frac{1}{b^2+c^2+1}+\frac{1}{c^2+a^2+1}\)
Cho a ; b ; c > 0 ; ab + bc + ac = 1
Tìm max : \(\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}-\dfrac{1}{c^2+1}\)
ĐK : a;b;c > 0
Ta có : \(ab+bc+ac=1\) \(\Leftrightarrow c\left(a+b\right)=1-ab\Leftrightarrow c=\dfrac{1-ab}{a+b}\)
Khi đó : \(c^2+1=\left(\dfrac{1-ab}{a+b}\right)^2+1\) \(=\dfrac{\left(ab\right)^2+1+a^2+b^2}{\left(a+b\right)^2}=\dfrac{\left(a^2+1\right)\left(b^2+1\right)}{\left(a+b\right)^2}\)
\(\Rightarrow\dfrac{1}{c^2+1}=\dfrac{\left(a+b\right)^2}{\left(a^2+1\right)\left(b^2+1\right)}\)
Ta có : \(\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}=\dfrac{ab^2+a^2b+a+b}{\left(a^2+1\right)\left(b^2+1\right)}=\dfrac{\left(ab+1\right)\left(a+b\right)}{\left(a^2+1\right)\left(b^2+1\right)}\)
Suy ra : \(A=\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}-\dfrac{1}{c^2+1}=\dfrac{\left(a+b\right)\left(ab+1-a-b\right)}{\left(a^2+1\right)\left(b^2+1\right)}=\dfrac{\left(a+b\right)\left(1-a\right)\left(1-b\right)}{\left(a^2+1\right)\left(b^2+1\right)}\)
AD BĐT Cauchy ta được : \(\left(a+b\right)\left[\left(1-a\right)\left(1-b\right)\right]\le\dfrac{\left[a+b+\left(1-a\right)\left(1-b\right)\right]^2}{4}=\dfrac{\left(1+ab\right)^2}{4}\)
\(\left(a^2+1\right)\left(b^2+1\right)\ge\left(ab+1\right)^2\) ( theo BCS )
Suy ra : \(A\le\dfrac{1}{4}\)
cho a,b,c duong , a+b+c=1
a, tim Min A=1/(a^2+b^2) +1/(b^2+c^2) +1/(c^2+a^2) +1/ab +1/bc +1/ac
b, tìm Min B=1/(a^2+bc) +1/(b^2+ac) +1/(c^2+ab) +1/ab +1/bc +1/ac
\(a\text{) }\)Áp dụng: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) (a, b > 0). Dấu "=" xảy ra khi a = b.
\(\frac{1}{a^2+b^2}+\frac{1}{ab}=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{2.\frac{\left(a+b\right)^2}{4}}=\frac{6}{\left(a+b\right)^2}\)
\(=6\left[\frac{1}{\left(a+b\right)^2}+\frac{27}{8}\left(a+b\right)+\frac{27}{8}\left(a+b\right)\right]-\frac{81}{2}\left(a+b\right)\)
\(\ge6.3\sqrt[3]{\frac{1}{\left(a+b\right)^2}.\frac{27}{8}\left(a+b\right).\frac{27}{8}\left(a+b\right)}-\frac{81}{2}\left(a+b\right)\)
\(=\frac{81}{2}-\frac{81}{2}\left(a+b\right)\)
Tương tự: \(\frac{1}{b^2+c^2}+\frac{1}{bc}\ge\frac{81}{2}-\frac{81}{2}\left(b+c\right)\)
\(\frac{1}{c^2+a^2}+\frac{1}{ca}\ge\frac{81}{2}-\frac{81}{2}\left(c+a\right)\)
Cộng theo vế ta được
\(A\ge3.\frac{81}{2}-81\left(a+b+c\right)=3.\frac{81}{2}-81=\frac{81}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}.\)
Vậy GTNN của A là \(\frac{81}{2}.\)