Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh Vương Nguyễn Diệu
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 10 2020 lúc 17:53

Trước hết ta chứng minh BĐT sau:

\(x^2+y^2+z^2+2yz=x^2+\left(y+z\right)^2\ge2x\left(y+z\right)\)

Không mất tính tổng quát, giả sử \(c=min\left\{a;b;c\right\}\)

Ta sẽ chứng minh \(\frac{c^2}{c^2+ab+1}\le\frac{c}{a+b+c}\) (1)

Thật vậy, BĐT tương đương: \(\frac{2c^2}{2c^2+2ab+a^2+b^2+c^2}\le\frac{c}{a+b+c}\)

\(\Leftrightarrow2c^2\left(a+b+c\right)\le c\left(a^2+b^2+2ab+3c^2\right)\)

\(\Leftrightarrow c\left(a^2+b^2+2ab+c^2-2ac-2bc\right)\ge0\)

\(\Leftrightarrow c\left(a+b-c\right)^2\ge0\) (luôn đúng với mọi số thực không âm)

Đồng thời áp dụng hệ quả đã chứng minh ban đầu:

\(\frac{a^2}{a^2+bc+1}=\frac{2a^2}{2a^2+\left(2bc+a^2+b^2+c^2\right)}\le\frac{2a^2}{2a^2+2a\left(b+c\right)}=\frac{a}{a+b+c}\) (2)

Tương tự ta được: \(\frac{b^2}{b^2+ac+1}\le\frac{b}{a+b+c}\) (3)

Cộng vế với vế (1); (2); (3) \(\Rightarrow P\le1\)

Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(0;1;1\right)\) và hoán vị

Giờ bận ăn cơm, có gì buổi tối bài nào làm được thì mình làm tiếp

Khách vãng lai đã xóa
Mun Amie
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 6 2021 lúc 18:11

\(c\left(1+ab\right)\le c\left(1+\dfrac{a^2+b^2}{2}\right)=c\left(1+\dfrac{1-c^2}{2}\right)=1-\dfrac{1}{2}\left(c-1\right)^2\left(c+2\right)\le1\)

\(\Rightarrow c^2\left(1+ab\right)\le c\Rightarrow\dfrac{c}{1+ab}\ge c^2\)

Hoàn toàn tương tự ta có: \(\dfrac{a}{1+bc}\ge a^2\) ; \(\dfrac{b}{1+ac}\ge b^2\)

Cộng vế: \(VT\ge a^2+b^2+c^2=1\) (đpcm)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị

Akai Haruma
9 tháng 6 2021 lúc 16:43

Cách 2:

Áp dụng BĐT Bunhiacopxky:

\(\text{VT}[a(1+bc)+b(1+ac)+c(1+ab)]\geq (a+b+c)^2\)

\(\Rightarrow \text{VT}\geq \frac{(a+b+c)^2}{a+b+c+3abc}\)

 Ta sẽ CM: 

\(\frac{(a+b+c)^2}{a+b+c+3abc}\geq 1\)

\(\Leftrightarrow 1+2(ab+bc+ac)\geq a+b+c+3abc\)

Vì $a^2+b^2+c^2=1\Rightarrow a,b,c\leq 1$

$\Rightarrow (a-1)(b-1)(c-1)\leq 0$

$\Leftrightarrow 1+ ab+bc+ac\geq a+b+c+abc(1)$

Áp dụng BĐT AM-GM:

$ab+bc+ac\geq 3\sqrt[3]{a^2b^2c^2}\geq 3\sqrt[3]{a^2b^2c^2.abc}=3abc\geq 2abc(2)$

Từ $(1);(2)\Rightarrow 1+2(ab+bc+ac)\geq a+b+c+3abc$

Ta có đpcm

Dấu "=" xảy ra khi $(a,b,c)=(1,0,0)$ và hoán vị.

Nguyễn Hồng Phúc
Xem chi tiết
Nguyễn Hồng Phúc
8 tháng 3 2022 lúc 9:13

Cái c là \(\dfrac{2}{\sqrt{1+c^2}}\) ạ

Nguyễn Việt Lâm
8 tháng 3 2022 lúc 15:23

\(P=\dfrac{2-\left(1+a^2\right)}{1+a^2}+\dfrac{2-\left(1+b^2\right)}{1+b^2}+\dfrac{2}{\sqrt{1+c^2}}\)

\(P=2\left(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}+\dfrac{1}{\sqrt{1+c^2}}\right)-2\) 

Từ điều kiện \(ab+bc+ca=1\), đặt \(\left\{{}\begin{matrix}a=tanx\\b=tany\\c=tanz\end{matrix}\right.\) với \(x+y+z=\dfrac{\pi}{2}\)

Xét \(Q=\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}+\dfrac{1}{\sqrt{1+c^2}}=\dfrac{1}{1+tan^2x}+\dfrac{1}{1+tan^2y}+\dfrac{1}{\sqrt{1+tan^2z}}\)

\(Q=cos^2x+cos^2y+cosz=1+\dfrac{1}{2}\left(cos2x+cos2y\right)+cosz\)

\(=1+cos\left(x+y\right)cos\left(x-y\right)+cosz\le1+cos\left(x+y\right)+cosz\)

\(=1+cos\left(\dfrac{\pi}{2}-z\right)+cosz=1+sinz+cosz=1+\sqrt{2}sin\left(z+\dfrac{\pi}{4}\right)\le1+\sqrt{2}\)

\(\Rightarrow P\le2\left(1+\sqrt{2}\right)-2=2\sqrt{2}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=y=\dfrac{\pi}{8}\\z=\dfrac{\pi}{4}\end{matrix}\right.\) \(\Rightarrow\left(a;b;c\right)=\left(\sqrt{2}-1;\sqrt{2}-1;1\right)\)

hiền nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 4 2023 lúc 23:15

\(\dfrac{1}{\sqrt{a^2-ab+b^2}}< =\dfrac{1}{\sqrt{2ab-ab}}=\dfrac{1}{\sqrt{ab}}\)

\(\sqrt{\dfrac{1}{b^2-bc+c^2}}< =\dfrac{1}{\sqrt{bc}};\sqrt{\dfrac{1}{c^2-ac+c^2}}< =\dfrac{1}{\sqrt{ac}}\)

=>P<=1/a+1/b+1/c=3

Dấu = xảy ra khi a=b=c=1

Kinder
Xem chi tiết
Lê Thị Thục Hiền
13 tháng 6 2021 lúc 14:28

Có \(ab+bc+ac=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)

Áp dụng các bđt sau:Với x;y;z>0 có: \(\dfrac{1}{x+y+z}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\) và \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\) 

Có \(\dfrac{1}{a+3b+2c}=\dfrac{1}{\left(a+b\right)+\left(b+c\right)+\left(b+c\right)}\le\dfrac{1}{9}\left(\dfrac{1}{a+b}+\dfrac{2}{b+c}\right)\)\(\le\dfrac{1}{9}.\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{b}+\dfrac{2}{c}\right)=\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{3}{b}+\dfrac{2}{c}\right)\)

CMTT: \(\dfrac{1}{b+3c+2a}\le\dfrac{1}{36}\left(\dfrac{1}{b}+\dfrac{3}{c}+\dfrac{2}{a}\right)\)

\(\dfrac{1}{c+3a+2b}\le\dfrac{1}{36}\left(\dfrac{1}{c}+\dfrac{3}{a}+\dfrac{2}{b}\right)\)

Cộng vế với vế => \(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{36}.6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}\)

Dấu = xảy ra khi a=b=c=3

Lê Thị Thục Hiền
13 tháng 6 2021 lúc 14:46

Có \(a+b=2\Leftrightarrow2\ge2\sqrt{ab}\Leftrightarrow ab\le1\)

\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+2ab\)

\(=9a^2b^2+6\left(a^3+b^3\right)+4ab+5ab\left(a+b\right)+20ab\)

\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+4ab+5ab\left(a+b\right)+20ab\)

\(=9a^2b^2+48-18ab.2+4ab+5.2.ab+20ab\)

\(=9a^2b^2-2ab+48\)

Đặt \(f\left(ab\right)=9a^2b^2-2ab+48;ab\le1\), đỉnh \(I\left(\dfrac{1}{9};\dfrac{431}{9}\right)\)

Hàm đồng biến trên khoảng \(\left[\dfrac{1}{9};1\right]\backslash\left\{\dfrac{1}{9}\right\}\)

 \(\Rightarrow f\left(ab\right)_{max}=55\Leftrightarrow ab=1\)

\(\Rightarrow E_{max}=55\Leftrightarrow a=b=1\)

Vậy...

Nguyễn Việt Lâm
13 tháng 6 2021 lúc 14:46

2,

\(ab\le\dfrac{1}{4}\left(a+b\right)^2=1\Rightarrow0\le ab\le1\)

\(E=9a^2b^2+6\left(a^3+b^3\right)+5ab\left(a+b\right)+24ab\)

\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+5ab\left(a+b\right)+24ab\)

\(=9a^2b^2-2ab+48\)

Đặt \(ab=x\Rightarrow0\le x\le1\)

\(E=9x^2-2x+48=\left(x-1\right)\left(9x+7\right)+55\le55\)

\(E_{max}=55\) khi \(x=1\) hay \(a=b=1\)

Linh Vương Nguyễn Diệu
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 10 2020 lúc 20:03

a/ \(k+2bc=a^2+\left(b^2+c^2+2bc\right)=a^2+\left(b+c\right)^2\ge2a\left(b+c\right)\)

Đẳng thức xảy ra khi \(b+c=a\)

b/ BĐT cần chứng minh tương đương:

\(k+2\left(ab+bc+ca\right)\le2k\left(1+2bc+2b^2c^2\right)\)

\(\Leftrightarrow4kb^2c^2+4kbc+k\ge2a\left(b+c\right)+2bc\)

Điều này hiển nhiên đúng do: \(k\ge1\Rightarrow4kbc\ge4bc\)

\(\Rightarrow4kb^2c^2+4kbc+k\ge4bc+k=2bc+\left(k+2bc\right)\ge2bc+2a\left(b+c\right)\)

c/ BĐT đã cho sai.

Phản ví dụ: giả sử cho \(a^2+b^2+c^2=2\)

BĐT trở thành \(a+b+c+abc\le2\)

Nhưng với \(a=b=c=\sqrt{\frac{2}{3}}\) thì \(a+b+c+abc=\frac{11\sqrt{6}}{9}>2\)

Nguyễn Việt Lâm
11 tháng 10 2020 lúc 20:05

Bài tập áp dụng:

Áp dụng BĐT ở câu b:

\(\left(a+b+c\right)^2\le2k\left(1+bc\right)^2\Rightarrow\frac{a^2}{\left(a+b+c\right)^2}\ge\frac{a^2}{2k\left(1+bc\right)^2}\)

\(\Leftrightarrow\frac{a}{1+bc}\le\sqrt{2k}.\frac{a}{a+b+c}=\sqrt{2}.\frac{a}{a+b+c}\)

Hoàn toàn tương tự, ta có:

\(\frac{b}{1+ca}\le\sqrt{2}.\frac{b}{a+b+c}\) ; \(\frac{c}{1+ca}\le\sqrt{2}.\frac{c}{a+b+c}\)

Cộng vế với vế: \(P\le\sqrt{2}.\frac{a+b+c}{a+b+c}=\sqrt{2}\)

\(P_{max}=\sqrt{2}\)khi \(\left(a;b;c\right)=\left(0;\frac{\sqrt{2}}{2};\frac{\sqrt{2}}{2}\right)\) và hoán vị

Lại có:

\(a\left(1+bc\right)\le a\left(1+\frac{b^2+c^2}{2}\right)=a\left(\frac{3-a^2}{2}\right)-1+1=-\frac{1}{2}\left(a-1\right)^2\left(a+2\right)+1\le1\)

\(\Rightarrow a^2\left(1+bc\right)\le a\Rightarrow\frac{a}{1+bc}\ge a^2\)

Tương tự ta có: \(\frac{b}{1+ca}\ge b^2\) ; \(\frac{c}{1+ab}\ge c^2\)

Cộng vế với vế: \(P\ge1\Rightarrow P_{min}=1\) khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị

Nguyễn Việt Lâm
11 tháng 10 2020 lúc 20:44

c/

Nếu dấu là trừ:

BĐT cần chứng minh tương đương:

\(\left(a+b+c-\frac{2}{k}abc\right)^2\le2k\)

Ta có:

\(VT=\left[\left(a+b\right).1+c\left(1-\frac{2}{k}ab\right)\right]^2\)

\(VT\le\left[\left(a+b\right)^2+c^2\right]\left[1+\left(1-\frac{2}{k}ab\right)^2\right]\)

\(VT\le\left(k+2ab\right)\left(2-\frac{4}{k}ab+\frac{4a^2b^2}{k^2}\right)\)

\(VT\le2k-\frac{4}{k}a^2b^2+\frac{8}{k^2}\left(ab\right)^3\)

Do đó ta chỉ cần chứng minh: \(2k-\frac{4}{k}\left(ab\right)^2+\frac{8}{k^2}\left(ab\right)^3\le2k\)

\(\Leftrightarrow\frac{1}{k}\left(ab\right)^2-\frac{2}{k^2}\left(ab\right)^3\ge0\)

\(\Leftrightarrow\frac{1}{k}\left(ab\right)^2\left(1-\frac{2ab}{k}\right)\ge0\)

Từ giả thiết \(k=a^2+b^2+c^2\ge a^2+b^2\ge2ab\Rightarrow\frac{2ab}{k}\le1\)

\(\Rightarrow1-\frac{2ab}{k}\ge0\Rightarrow\frac{1}{k}\left(ab\right)^2\left(1-\frac{2ab}{k}\right)\ge0\) (đpcm)

Khách vãng lai đã xóa
NBH
Xem chi tiết
FLT24
Xem chi tiết
Khôi Bùi
8 tháng 4 2022 lúc 16:31

ĐK : a;b;c > 0 

Ta có : \(ab+bc+ac=1\) \(\Leftrightarrow c\left(a+b\right)=1-ab\Leftrightarrow c=\dfrac{1-ab}{a+b}\)

Khi đó :  \(c^2+1=\left(\dfrac{1-ab}{a+b}\right)^2+1\)  \(=\dfrac{\left(ab\right)^2+1+a^2+b^2}{\left(a+b\right)^2}=\dfrac{\left(a^2+1\right)\left(b^2+1\right)}{\left(a+b\right)^2}\)

\(\Rightarrow\dfrac{1}{c^2+1}=\dfrac{\left(a+b\right)^2}{\left(a^2+1\right)\left(b^2+1\right)}\) 

Ta có : \(\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}=\dfrac{ab^2+a^2b+a+b}{\left(a^2+1\right)\left(b^2+1\right)}=\dfrac{\left(ab+1\right)\left(a+b\right)}{\left(a^2+1\right)\left(b^2+1\right)}\)

Suy ra : \(A=\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}-\dfrac{1}{c^2+1}=\dfrac{\left(a+b\right)\left(ab+1-a-b\right)}{\left(a^2+1\right)\left(b^2+1\right)}=\dfrac{\left(a+b\right)\left(1-a\right)\left(1-b\right)}{\left(a^2+1\right)\left(b^2+1\right)}\)

AD BĐT Cauchy ta được :  \(\left(a+b\right)\left[\left(1-a\right)\left(1-b\right)\right]\le\dfrac{\left[a+b+\left(1-a\right)\left(1-b\right)\right]^2}{4}=\dfrac{\left(1+ab\right)^2}{4}\)

\(\left(a^2+1\right)\left(b^2+1\right)\ge\left(ab+1\right)^2\)  ( theo BCS )

Suy ra : \(A\le\dfrac{1}{4}\)

Trang Hoang
Xem chi tiết
Mr Lazy
9 tháng 8 2015 lúc 21:55

\(a\text{) }\)Áp dụng: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) (a, b > 0). Dấu "=" xảy ra khi a = b.

\(\frac{1}{a^2+b^2}+\frac{1}{ab}=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{2.\frac{\left(a+b\right)^2}{4}}=\frac{6}{\left(a+b\right)^2}\)

\(=6\left[\frac{1}{\left(a+b\right)^2}+\frac{27}{8}\left(a+b\right)+\frac{27}{8}\left(a+b\right)\right]-\frac{81}{2}\left(a+b\right)\)

\(\ge6.3\sqrt[3]{\frac{1}{\left(a+b\right)^2}.\frac{27}{8}\left(a+b\right).\frac{27}{8}\left(a+b\right)}-\frac{81}{2}\left(a+b\right)\)

\(=\frac{81}{2}-\frac{81}{2}\left(a+b\right)\)

Tương tự: \(\frac{1}{b^2+c^2}+\frac{1}{bc}\ge\frac{81}{2}-\frac{81}{2}\left(b+c\right)\)

\(\frac{1}{c^2+a^2}+\frac{1}{ca}\ge\frac{81}{2}-\frac{81}{2}\left(c+a\right)\)

Cộng theo vế ta được 

\(A\ge3.\frac{81}{2}-81\left(a+b+c\right)=3.\frac{81}{2}-81=\frac{81}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}.\)

Vậy GTNN của A là \(\frac{81}{2}.\)