giải pt \(tanx-cotx=\frac{3}{2}\)
giải pt :
\(sinx+cosx=\frac{2}{tanx}-\frac{2}{cotx}\)
ĐKXĐ: \(sin2x\ne0\Leftrightarrow x\ne\frac{k\pi}{2}\)
\(sinx+cosx=\frac{2cosx}{sinx}-\frac{2sinx}{cosx}\)
\(\Leftrightarrow sinx+cosx=\frac{2\left(cos^2x-sin^2x\right)}{sinx.cosx}\)
\(\Leftrightarrow sinx+cosx=\frac{2\left(sinx+cosx\right)\left(cosx-sinx\right)}{sinx.cosx}\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=0\Leftrightarrow...\\\frac{2\left(cosx-sinx\right)}{sinx.cosx}=1\left(1\right)\end{matrix}\right.\)
Xét (1) \(\Leftrightarrow2\left(cosx-sinx\right)=sinx.cosx\)
Đặt \(cosx-sinx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{1-t^2}{2}\end{matrix}\right.\)
\(\Rightarrow2t=\frac{1-t^2}{2}\Leftrightarrow t^2-4t-1=0\)
\(\Rightarrow\left[{}\begin{matrix}t=2+\sqrt{5}\left(l\right)\\t=2-\sqrt{5}\end{matrix}\right.\)
\(\Rightarrow cosx-sinx=2-\sqrt{5}\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=\frac{\sqrt{5}-2}{\sqrt{2}}=sina\)
\(\Rightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=a+k2\pi\\x-\frac{\pi}{4}=\pi-a+k2\pi\end{matrix}\right.\)
giải pt: /tanx/=cotx+\(\frac{1}{c\text{os}x}\)
Giải PT: tanx= cotx+4cos2x
Giải pt
\(cotx-tanx=sinx+cosx\)
\(sinx+cosx+\dfrac{1}{sinx}+\dfrac{1}{cosx}=\dfrac{10}{3}\)
1.
ĐK: \(x\ne\dfrac{k\pi}{2}\)
\(cotx-tanx=sinx+cosx\)
\(\Leftrightarrow\dfrac{cosx}{sinx}-\dfrac{sinx}{cosx}=sinx+cosx\)
\(\Leftrightarrow\dfrac{cos^2x-sin^2x}{sinx.cosx}=sinx+cosx\)
\(\Leftrightarrow\left(\dfrac{cosx-sinx}{sinx.cosx}-1\right)\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(1\right)\\cosx-sinx=sinx.cosx\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=0\Leftrightarrow x=-\dfrac{\pi}{4}+k\pi\)
\(\left(2\right)\Leftrightarrow t=\dfrac{1-t^2}{2}\left(t=cosx-sinx,\left|t\right|\le2\right)\)
\(\Leftrightarrow t^2+2t-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-1+\sqrt{2}\\t=-1-\sqrt{2}\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow cosx-sinx=-1+\sqrt{2}\)
\(\Leftrightarrow-\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)=-1+\sqrt{2}\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}-1}{\sqrt{2}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\\x=\dfrac{5\pi}{4}-arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\end{matrix}\right.\)
Vậy phương trình đã cho có nghiệm:
\(x=-\dfrac{\pi}{4}+k\pi;x=\dfrac{\pi}{4}+arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi;x=\dfrac{5\pi}{4}-arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\)
3.tìm m để pt tanx(tanx-2)+cotx(cotx-2)=m
a. có nghiệm
b.có nghiệm thuộc (0;pi/4)
Đk : Cosx ≠ 0 và Sinx ≠ 0 ↔ x ≠ k. π/2. Khi đó :
<1> ↔ Tan^2x + cot^2x – 2( Tanx + cotx) = m
↔ [Tan^2x + 1/( Tan^2x)] – 2[ Tanx + 1/( Tanx)] = m
Đặt tanx + 1/tanx = t ( t € R )
PT trên trở thành
t^2 – 2 -2t = m<*>
a, Bài toán quy về tìm m để PT <*> có nghiệm
<*> ↔ t^2 – 2t -2 – m = 0
Để thỏa mãn thì ; ∆’ = 1 +2 + m ≥ 0 ↔ m ≥ - 3
b, Với x thuộc (0;pi/4) thì tanx > 0
Khi đó t ≥ 2 ( theo BĐT Cô-si)
Bài toán quy về tìm m để PT <*> có nghiệm t ≥ 2
Xét hàm số y = t^2 – 2t -2 trên [2; +∞)
Bạn cũng vẽ bảng biến thiên ra
Từ bảng biến thiên ta thấy để thỏa mãn thì
m ≥ -2
Giải pt sau:
\(2\left(Tan^2x-Cot^2x\right)-5\left(Tanx+Cotx\right)+6=0\)
giải các pt
a) \(cos2x+cosx+1=0\)
b) \(tanx+cotx=2\)
c) \(tan^2x+\left(\sqrt{3}-1\right)tanx-\sqrt{3}=0\)
d) \(cot^22x+\frac{3}{tan2x}+2=0\)
a/
\(\Leftrightarrow2cos^2x-1+cosx+1=0\)
\(\Leftrightarrow cosx\left(2cosx+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
b/ ĐKXĐ: ...
\(\Leftrightarrow tanx+\frac{1}{tanx}=2\)
\(\Leftrightarrow tan^2x+1=2tanx\)
\(\Leftrightarrow tan^2x-2tanx+1=0\)
\(\Leftrightarrow tanx=1\Rightarrow x=\frac{\pi}{4}+k\pi\)
c/
\(a+b+c=1+\sqrt{3}-1-\sqrt{3}=0\)
\(\Rightarrow\) Pt có 2 nghiệm: \(\left[{}\begin{matrix}tanx=1\\tanx=-\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)
d/ ĐKXĐ: ...
\(\Leftrightarrow cot^22x+3.cot2x+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cot2x=-1\\cot2x=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=-\frac{\pi}{4}+k\pi\\2x=arccot\left(-2\right)+k\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{8}+\frac{k\pi}{2}\\x=\frac{1}{2}arccot\left(-2\right)+\frac{k\pi}{2}\end{matrix}\right.\)
giải các pt
a) \(cosx+cos3x+\left(cos^4x-sin^4x\right).cos2x=0\)
b) \(cos^2\frac{x}{2}+sin^2x+cos2x=\frac{1}{2}\)
c) \(\left(tanx+cotx\right)^2+\frac{3}{sin2x}-7=0\)
a/
\(\Leftrightarrow2cos2x.cosx+\left(cos^2x+sin^2x\right)\left(cos^2x-sin^2x\right).cos2x=0\)
\(\Leftrightarrow2cos2x.cosx+cos^22x=0\)
\(\Leftrightarrow cos2x\left(2cosx+cos2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\left(1\right)\\2cosx+cos2x=0\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2x=\frac{\pi}{2}+k\pi\Rightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)
\(\left(2\right)\Leftrightarrow2cosx+2cos^2x-1=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=\frac{\sqrt{3}-1}{2}\\cosx=\frac{-\sqrt{3}-1}{2}< -1\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=\pm arccos\left(\frac{\sqrt{3}-1}{2}\right)+k2\pi\)
b/
\(\Leftrightarrow\frac{1}{2}+\frac{1}{2}cosx+1-cos^2x+2cos^2x-1=\frac{1}{2}\)
\(\Leftrightarrow cos^2x+\frac{1}{2}cosx=0\)
\(\Leftrightarrow cosx\left(cosx+\frac{1}{2}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
c/ ĐKXĐ: ...
\(\Leftrightarrow\left(\frac{sinx}{cosx}+\frac{cosx}{sinx}\right)^2+\frac{3}{sin2x}-7=0\)
\(\Leftrightarrow\left(\frac{sin^2x+cos^2x}{sinx.cosx}\right)^2+\frac{3}{sin2x}-7=0\)
\(\Leftrightarrow\left(\frac{2}{sin2x}\right)^2+\frac{3}{sin2x}-7=0\)
Đặt \(\frac{1}{sin2x}=a\Rightarrow4a^2+3a-7=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{7}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{1}{sin2x}=1\\\frac{1}{sin2x}=-\frac{7}{4}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=-\frac{4}{7}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k2\pi\\2x=arcsin\left(-\frac{4}{7}\right)+k2\pi\\2x=\pi-arcsin\left(-\frac{4}{7}\right)+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{1}{2}arcsin\left(-\frac{4}{7}\right)+k\pi\\x=\frac{\pi}{2}-\frac{1}{2}arcsin\left(-\frac{4}{7}\right)+k\pi\end{matrix}\right.\)
Cho six=2/3.Tính C=\(\frac{cotx-tanx}{cosx+tanx}\)