Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phúc Thiên
Xem chi tiết
ミ★ɦυүềη☆bùї★彡
Xem chi tiết
Minh Thiện
29 tháng 10 2018 lúc 19:55

A=4cm,B=6,C=10

Nếu A=4,B=6,C=10 thì A+B+C=4+6+10=20

Haibara Ai
Xem chi tiết
Akai Haruma
23 tháng 9 2020 lúc 12:52

Lời giải:

Bài toán cần bổ sung điều kiện $n\in\mathbb{N}>1$

Quy nạp.

Với $n=2,3$ thì bài toán hiển nhiên đúng

.....

Giả sử bài toán đúng đến $n$. Tức là:

$A_n=\frac{1}{2}.\frac{3}{4}....\frac{2n-1}{2n}< \frac{1}{\sqrt{3n+1}}$

Ta cần chứng minh nó cũng đúng với $n+1$, tức là $A_{n+1}< \frac{1}{\sqrt{3n+4}}$

Thật vậy:

$A_{n+1}=A_n.\frac{2n+1}{2n+2}< \frac{1}{\sqrt{3n+1}}.\frac{2n+1}{2n+2}$

Giờ chỉ cần CM: $\frac{1}{\sqrt{3n+1}}.\frac{2n+1}{2n+2}< \frac{1}{\sqrt{3n+4}}$

$\Leftrightarrow (2n+1)^2(3n+4)< (2n+2)^2(3n+1)$

$\Leftrightarrow -n< 0$ (luôn đúng)

Vậy phép quy nạp hoàn thành. Ta có đpcm.

Khách vãng lai đã xóa
Arceus Official
Xem chi tiết
Lưu Thị Bằng
Xem chi tiết
cherri cherrieee
Xem chi tiết
Nguyễn Linh Chi
24 tháng 4 2020 lúc 17:07

a) lim \(\frac{\left(2n^2-3n+5\right)\left(2n+1\right)}{\left(4-3n\right)\left(2n^2+n+1\right)}\)

= lim \(\frac{\left(2-\frac{3}{n}+\frac{5}{n^2}\right)\left(2+\frac{1}{n}\right)}{\left(\frac{4}{n}-3\right)\left(2+\frac{1}{n}+\frac{1}{n^2}\right)}=\frac{4}{-6}=-\frac{2}{3}\)

b)lim ( \(\frac{\sqrt{n^4+1}}{n}-\frac{\sqrt{4n^6+2}}{n^2}\))

= lim ( \(\frac{n\sqrt{n^4+1}-\sqrt{4n^6+2}}{n^2}\) )

= lim \(\frac{\left(n^6+n^2\right)-\left(4n^6+2\right)}{n^2\left(n\sqrt{n^4+1}+\sqrt{4n^2+2}\right)}\)

= lim \(\frac{-3n^6+n^2+2}{n^3\sqrt{n^4+1}+n^2\sqrt{4n^2+2}}\)

= lim \(\frac{-3n\left(1-\frac{1}{n^4}-\frac{2}{n^6}\right)}{\sqrt{1+\frac{1}{n^4}}+\frac{1}{n^2}\sqrt{4+\frac{2}{n^2}}}\)

= lim \(-3n=-\infty\)

c) lim \(\frac{2n+3}{\sqrt{9n^2+3}-\sqrt[3]{2n^2-8n^3}}\)

= lim\(\frac{2+\frac{3}{n}}{\sqrt{9+\frac{3}{n^2}}-\sqrt[3]{\frac{2}{n}-8}}=\frac{2}{3+2}=\frac{2}{5}\)

Phan Hoàng Quốc Khánh
Xem chi tiết
tth_new
28 tháng 7 2019 lúc 10:51

Với n = 0,7 thì BĐT đúng chăng?

Thanh Tùng DZ
Xem chi tiết
Bùi Minh Anh
Xem chi tiết