Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lưu Thị Bằng

\(Chứng\)\(minh:\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{2n-1}{2n}< \frac{2}{\sqrt{2n+1}}\)

Đặng Ngọc Quỳnh
23 tháng 9 2020 lúc 23:06

Khi n=1, ta được \(\frac{1}{2}< \frac{1}{\sqrt{2.1+1}}\Leftrightarrow\frac{1}{2}< \frac{1}{\sqrt{3}}\)   : đúng

giả sử mệnh đề đúng khi n=k\(\left(k\ge1\right)\), tức là \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{2k-1}{2k}< \frac{1}{\sqrt{2k+1}}\)

Bây giờ ta chứng minh mệnh đề cũng đúng khi n=k+1, tức là ta phải chứng minh BĐT sau:

\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{2k-1}{2k}.\frac{2k+1}{2\left(k+1\right)}< \frac{1}{\sqrt{2k+3}}\)

Thật vậy, theo giả thiết quy nạp \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{2k-1}{2k}< \frac{1}{\sqrt{2k+1}}\)

\(\Leftrightarrow\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{2k-1}{2k}.\frac{2k+1}{2\cdot\left(k-1\right)}< \frac{1}{\sqrt{2k+1}}.\frac{2k+1}{2\left(k+1\right)}\)

Ta cần chứng minh \(\frac{1}{\sqrt{2k+1}}.\frac{2k+1}{2\left(k+1\right)}< \frac{1}{\sqrt{2k+3}}\Leftrightarrow\frac{1}{\left(2k+1\right)}.\frac{\left(2k+1\right)^2}{4\left(k+1\right)^2}< \frac{1}{\left(2k+3\right)}\)

\(\Leftrightarrow\left(2k+1\right)^2\left(2k+3\right)< 4\left(k+1\right)^2\left(2k+1\right)\Leftrightarrow0< 2k+1\): luôn đúng

=>mệnh đề đúng với n=k+1

Vậy theo phương pháp quy nạp toán học \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{2n-1}{2n}< \frac{1}{\sqrt{2n+1}}\)với mọi n nguyên dương.

Khách vãng lai đã xóa
Lưu Thị Bằng
29 tháng 9 2020 lúc 21:07

bạn ơi sao thay n=1 lại ra  VT=1/2 ??
 

Khách vãng lai đã xóa