Chứng minh rằng: Nếu \(\left(a+b+c\right)^2=3.\left(ab+bc+ca\right)\) thì a=b=c
Cho ba số thực a, b, c. Chứng minh rằng:\(\left(a^2-bc\right)^3+\left(b^2-ca\right)^3+\left(c^2-ab\right)^3\ge3\left(a^2-bc\right)\left(b^2-ca\right)\left(c^2-ab\right)\)
Đặt \(\left\{{}\begin{matrix}a^2-bc=x\\b^2-ca=y\\c^2-ab=z\end{matrix}\right.\)
\(\Rightarrow x+y+z\ge0\)
\(\)Đẳng thức cần c/m trở thành: \(x^3+y^3+z^3\ge3xyz\left(1\right)\)
Áp dụng Bất đẳng thức AM-GM cho 3 số x,y,z, ta có:
\(x^3+y^3+z^3\ge3\sqrt[3]{x^3.y^3.z^3}=3xyz\)
=> Đẳng thức (1) luôn đúng với mọi x
Dấu = xảy ra khi: x=y=z hay \(a^2-bc=b^2-ca=c^2-ab\)
và \(a^2+b^2+c^2-\left(ab+bc+ca\right)=0\)\(\Rightarrow a=b=c\)
Cho 3 số thực a,b,c chứng minh rằng:
\(ab\left(b^2+bc+ca\right)+bc\left(c^2+ac+ab\right)+ca\left(a^2+ab+bc\right)\le\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)\)
Lời giải:
Ba số thực $a,b,c$ cần có thêm điều kiện không âm mới đúng.
BĐT cần chứng minh tương đương với:
$ab^3+bc^3+ca^3+2abc(a+b+c)\leq a^3b+b^3c+c^3a+ab^3+bc^3+ca^3+abc(a+b+c)$
$\Leftrightarrow abc(a+b+c)\leq a^3b+b^3c+c^3a(*)$
Áp dụng BĐT Bunhiacopxky:
$(a^3b+b^3c+c^3a)(abc^2+bca^2+cab^2)\geq (a^2bc+b^2ca+c^2ab)^2$
$\Rightarrow a^3b+b^3c+c^3a\geq abc(a+b+c)$
BĐT $(*)$ đúng nên ta có đpcm.
Dấu "=" xảy ra khi $a=b=c$
SOS là ra, khá đơn giản. Ta có:
$$\text{VP}-\text{VT}=ab \left( -c+a \right) ^{2}+ca \left( b-c \right) ^{2}+cb \left( a-b
\right) ^{2}\geqq 0.$$
Đẳng thức xảy ra khi $a=b=c.$
Cho 3 số thực a,b,c chứng minh rằng:
\(ab\left(b^2+bc+ca\right)+bc\left(c^2+ac+ab\right)+ca\left(a^2+ab+bc\right)\le\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)\)
a,b,c>0
\(VP-VT=a^3b+b^3c+c^3a-abc\left(a+b+c\right)=abc\Sigma\frac{\left(a-b\right)^2}{a}\ge0\)
Chứng minh rằng \(a=b=c\) nếu \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=3\left(a^2+b^2+c^2-ab-bc-ca\right)\)
tách hết ra rồi chuyển vế đổi dấu ra... => ĐPCM
Vì a=b=c nên ta có:
\(3\left(a^2+b^2+c^2-ab-bc-ca\right)=3\left(b^2+b^2+b^2-b^2-b^2-b^2\right)=0\left(1\right)\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\left(2\right)\)
Từ (1) và (2)\(\Rightarrow\)đpcm
Chứng minh rằng \(a=b=c\) nếu \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=3\left(a^2+b^2+c^2-ab-bc-ca\right)\).
Có :
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)
\(=a^2+b^2-2ab+b^2+c^2-2bc+c^2+a^2-2ac\)
\(=2a^2+2b^2+2c^2-2ab-2bc-2ab\)
\(3\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(=3a^2+3b^2+3c^2-3ab-3bc-3ac\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ab=3a^2+3b^2+3c^2-3ab-3bc-3ac\)
Trừ cả 2 vế đi \(2a^2+2b^2+2c^2-2ab-2ac-2bc;\)có :
\(\Rightarrow a^2+b^2+c^2-bc-ca-ac=0\)
\(\Rightarrow2\left(a^2+b^2+c^2-bc-ca-ac\right)=0.2\)
\(\Rightarrow\left(a^2+b^2-2ab\right)+\left(b^2+c^2-2bc\right)+\left(a^2+c^2-2ab\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Mà \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{cases}}\)
\(\Rightarrow a-b=b-c=c-a=0\)
\(\Rightarrow a=b=c\)
Vậy ...
Chứng minh rằng: Nếu \(\left(a+b+c\right)^2=3.\left(ab+bc+ca\right)\) thì a=b=c
Chứng minh rằng: Nếu \(\left(a+b+c\right)^2=3.\left(ab+bc+ca\right)\) thì a=b=c
\(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)
=> \(a^2+b^2+c^2=ab+ac+bc\)
=> \(2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
=> \(\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)
=> \(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)
=> \(\left\{{}\begin{matrix}a=b\\a=c\\b=c\end{matrix}\right.\)
=> a = b = c
Vậy .....
Chứng minh rằng a+b+c nếu có một trong các điều kiện sau:
a) \(a^2+b^2+c^2=ab+bc+ca\)
b) \(\left(a+b+c\right)^2=3\left(a^2+b^2+c^2\right)\)
c) \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
Chứng minh rằng nếu:
\(\frac{abc\left(b-c+a\right)-\left(ab\right)^2}{7776}=\frac{abc\left(c-a+b\right)-\left(bc\right)^2}{-19440}=\frac{abc\left(b-c+a\right)-\left(ca\right)^2}{-12960}\)
thì
\(4a=6b=9c\)