Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Gia  Linh
Xem chi tiết
Nguyễn Gia  Linh
1 tháng 9 2021 lúc 9:01

giúp mik với

Huỳnh Thanh Hương
Xem chi tiết
Trương Như Huỳnh
12 tháng 12 2015 lúc 19:14

giá trị lớn nhất là 4 tin mình đi, mình làm rồi, chúc bạn thành công

Đỗ Tuệ Lâm
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 4 2023 lúc 13:28

Trước hết ta c/m bổ đề sau:

Với mọi số thực dương x;y ta luôn có:

\(x^4+y^4\ge xy\left(x^2+y^2\right)\)

Thật vậy, BĐT đã cho tương đương:

\(x^4-x^3y+y^4-xy^3\ge0\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left(x^3-y^3\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\) (luôn đúng)

Áp dụng bổ đề trên ta có:

\(T\le\dfrac{a}{bc\left(b^2+c^2\right)+a}+\dfrac{b}{ac\left(a^2+c^2\right)+b}+\dfrac{c}{ab\left(a^2+b^2\right)+c}\)

\(\Rightarrow T\le\dfrac{a^2}{abc\left(b^2+c^2\right)+a^2}+\dfrac{b^2}{abc\left(a^2+c^2\right)+b^2}+\dfrac{c^2}{abc\left(a^2+b^2\right)+c^2}\)

\(\Rightarrow T\le\dfrac{a^2}{a^2+b^2+c^2}+\dfrac{b^2}{a^2+b^2+c^2}+\dfrac{c^2}{a^2+b^2+c^2}=1\)

\(T_{max}=1\) khi \(a=b=c=1\)

Tv Gaming Bảo
Xem chi tiết
Bà ngoại nghèo khó
5 tháng 11 2021 lúc 18:57

B

Norad II
5 tháng 11 2021 lúc 18:58

B

Cao Tùng Lâm
5 tháng 11 2021 lúc 19:01

B

Thu Nguyệt
Xem chi tiết

a) AB = 10 cm là > AC = 5 cm, do đó điểm C nằm giữa hai điểm A và B

b) C là trung điểm vì C nằm giữa (cm trên) và CA=CB=10 cm - 5 cm = 5 cm

c)Các tia trùng nhau gốc A: AB,AC,AM

d) BA và BC

thảo
Xem chi tiết
Toru
21 tháng 8 2023 lúc 9:07

Có: \(f\left(x\right)=2ax^2-4\left(bx-1\right)+5x+c-11\)

\(=2ax^2-4bx+4+5x+c-11\)

\(=2ax^2+\left(-4b+5\right)x+\left(c-11\right)\)

\(\Rightarrow f\left(x\right)=x^2-5x+6\Leftrightarrow\left\{{}\begin{matrix}2a=1\\-4b+5=-5\\c-11=6\end{matrix}\right.\) (theo đồng nhất hệ số)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=\dfrac{5}{2}\\c=17\end{matrix}\right.\)

tth_new
Xem chi tiết
Lê Hồ Trọng Tín
29 tháng 8 2019 lúc 19:36

Ta có M=a(b+c)+3b(c+a)+5c(a+b)=a(3-a)+3b(3-b)+5c(3-c)=\(\frac{81}{4}\)-\(\left(a-\frac{3}{2}\right)^2+3\left(b-\frac{3}{2}\right)^2+5\left(c-\frac{3}{2}\right)^2\)

Đặt x=\(\left|a-\frac{3}{2}\right|\),y=\(\left|b-\frac{3}{2}\right|\),z=\(\left|c-\frac{3}{2}\right|\)=>x+y+z\(\ge\left|a+b+c-\frac{9}{2}\right|=\frac{3}{2}\)

Khi đó M=\(\frac{81}{4}-\left(x^2+3y^2+5z^2\right)\)

Đưa thêm các tham số\(\alpha,\beta,\gamma>0\)Áp dụng bất đẳng thức AM-GM:\(x^2+\alpha^2\ge2x\alpha\)(1);\(3y^2+3\beta^2\ge6y\beta\)(2);\(5z^2+5\gamma^2\ge10z\gamma\)(3)

Suy ra: \(M-\alpha^2-3\beta^2-5\gamma^2\le\frac{81}{4}-2\left(x\alpha+3y\beta+5z\gamma\right)\)

Ta chọn \(\alpha=3\beta=5\gamma\)\(\Rightarrow M\le\frac{81}{4}+\alpha^2+3\beta^2+5\gamma^2-2\alpha\left(x+y+z\right)\)\(\le\frac{81}{4}+\alpha^2+3\beta^2+5\gamma^2-3a\)

Ta thấy dấu bằng các bất đẳng thức (1),(2),(3) xảy ra khi \(x=\alpha,y=\beta,z=\gamma\)\(\Rightarrow\alpha+\beta+\gamma=\alpha+\frac{\alpha}{3}+\frac{\alpha}{5}=x+y+z=\frac{3}{2}\)\(\Rightarrow\alpha=\frac{45}{46}\),\(\beta=\frac{15}{46},\gamma=\frac{9}{46}\)

Vậy MaxM=\(\le\frac{81}{4}+\left(\frac{45}{46}\right)^2+3\left(\frac{15}{46}\right)^2+5\left(\frac{9}{46}\right)^2-3.\frac{45}{46}\)=\(\frac{432}{23}\)

Qwerttyuiio
Xem chi tiết
võ mai
29 tháng 6 2018 lúc 15:29

Ư(3)={1,3}

ta có bảng

a-213
a35
   

vậy a = 5

còn các câu khác bạn làm tương tự

Đào Thị Thùy Dương
Xem chi tiết