(21+x)÷3=1
Giải các phương trình sau:
a/\(\dfrac{\sqrt{21+x}+\sqrt{21-x}}{\sqrt{21+x}-\sqrt{21-x}}\) =\(\dfrac{21}{x}\)
b/ \(\sqrt[3]{x+1}+\sqrt[3]{3x+1}=\sqrt[3]{x-1}\)
Giúp mình với ạ, qua tết mình phải nộp rồi.
Tính bằng hai cách :
a) 3/22 x 3/11 x 22
b) ( 1/2 + 1/3 ) x 2/5
c) 3/5 x 17/21 + 17/21 x 2/5
a: \(=\dfrac{3}{22}\cdot22\cdot\dfrac{3}{11}=3\cdot\dfrac{3}{11}=\dfrac{9}{11}\)
b: \(=\dfrac{5}{6}\cdot\dfrac{2}{5}=\dfrac{1}{3}\)
c: \(=\dfrac{17}{21}\left(\dfrac{3}{5}+\dfrac{2}{5}\right)=\dfrac{17}{21}\)
a : = \(\dfrac{3}{22}\). 22 . \(\dfrac{3}{11}\) = 3 . \(\dfrac{3}{11}\) = \(\dfrac{9}{11}\)
b : = \(\dfrac{5}{6}\). \(\dfrac{2}{5}\) = \(\dfrac{1}{3}\)
c: = \(\dfrac{17}{21}\)(\(\dfrac{3}{5}\) + \(\dfrac{2}{5}\) ) = \(\dfrac{17}{21}\)
cho x-3/7=-4/3 thì x có giá trị là: a.-19/21 b.-1/3 c. 19/21 d.7/21
cho x-3/7=-4/3 thì x có giá trị là: a.-19/21 b.-1/3 c. 19/21 d.7/21
cho x-3/7=-4/3 thì x có giá trị là: a.-19/21 b.-1/3 c. 19/21 d.7/21
\(x-\frac{3}{7}=\frac{-4}{3}\)
\(x=\frac{-4}{3}+\frac{3}{7}\)
\(x=-\frac{19}{21}\)
Vậy chọn đáp án \(a.\frac{-19}{21}\)
a)|-x+2/5|+1/2=3,5 b)21/5+3:|x/4-2/3|=6
c)7,5-3|5-2x|=-4,5 d)1/3-|5/4-2x|=1/4
e)21/5+3:|x/4-2/3|=6
a)|-x+2/5|+1/2=3,5 b)21/5+3:|x/4-2/3|=6
c)7,5-3|5-2x|=-4,5 d)1/3-|5/4-2x|=1/4
e)21/5+3:|x/4-2/3|=6
a: Ta có: \(\left|\dfrac{2}{5}-x\right|+\dfrac{1}{2}=3.5\)
\(\Leftrightarrow\left|x-\dfrac{2}{5}\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{2}{5}=3\\x-\dfrac{2}{5}=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{17}{5}\\x=-\dfrac{13}{5}\end{matrix}\right.\)
b: Ta có: \(\dfrac{21}{5}+3:\left|\dfrac{x}{4}-\dfrac{2}{3}\right|=6\)
\(\Leftrightarrow3:\left|\dfrac{1}{4}x-\dfrac{2}{3}\right|=6-\dfrac{21}{5}=\dfrac{9}{5}\)
\(\Leftrightarrow\left|\dfrac{1}{4}x-\dfrac{2}{3}\right|=\dfrac{5}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{4}x-\dfrac{2}{3}=\dfrac{5}{3}\\\dfrac{1}{4}x-\dfrac{2}{3}=-\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{4}x=\dfrac{7}{3}\\\dfrac{1}{4}x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{28}{3}\\x=-4\end{matrix}\right.\)
(x+1) . (21-1) = -21
x (2x+3) = 10
\(\left(x+1\right)\left(21-1\right)=-21\)
\(\left(x+1\right)\cdot20=-21\)
\(x+1=\frac{-21}{20}\)
\(x=\frac{-21}{20}-1\)
\(x=\frac{-41}{20}\)
( x + 1 ) . ( 21 - 1 ) = -21
( x + 1 ) . 20 = -21
( x + 1 ) = -21 : 20
( x + 1 ) = 1.05
x = 1,05 - 1
x = - 0 ,05
x ( 2x + 3 ) = 10
Xét bảng :
2x+3 | 1 | 10 | -1 | -10 | 2 | 5 | -2 | -5 |
x | 10 | 1 | -10 | -1 | 5 | 2 | -5 | -2 |
x1 | -1 | 3,5 | -2 | -6,5 | -0,5 | 1 | -2,5 | -4 |
x2 | 10 | 1 | -10 | -1 | 5 | 2 | -5 | -2 |
Vậy ko có giá trị của x thỏa mãn
Tính nhanh (nếu được)
3 x 15 + 21 x 15 + 85 x 5
15 - 30 + 40
21 + 19 - 50 + 10
1/5 - 1/4 + 2
(1/4 +1/6) x (1/2 -1/4)
1/10 + 1/5 - 3/4
3 x 15 + 21 x 15 + 85 x 5
= 45 + 315 + 425
= 785
15 - 30 + 40
= 25
21 + 19 - 50 + 10
= 0
\(\dfrac{1}{5}-\dfrac{1}{4}+2\)
\(=-\dfrac{1}{20}+2\)
\(=\dfrac{39}{20}\)
\(\left(\dfrac{1}{4}+\dfrac{1}{6}\right)\times\left(\dfrac{1}{2}-\dfrac{1}{4}\right)\)
\(=\dfrac{5}{12}\times\dfrac{1}{4}\)
\(=\dfrac{5}{12}\times\dfrac{3}{12}\)
\(=\dfrac{5}{48}\)
\(\dfrac{1}{10}+\dfrac{1}{5}-\dfrac{3}{4}\)
\(=-\dfrac{9}{20}\)
\(3\times15+21\times15+85\times5\\ =15\times\left(3+21\right)+425\\ =15\times24+425\\ =360+425\\ =785\)
\(15-30+40\\ =\left(15+40\right)-30\\ =55-30\\ =25\)
\(21+19-50+10\\ =\left(21+19\right)-\left(50-10\right)\\ =40-40\\ =0\)
\(\dfrac{1}{5}-\dfrac{1}{4}+2\)
\(=\dfrac{4}{20}-\dfrac{5}{20}+\dfrac{40}{20}\)
\(=\dfrac{\left(4+40\right)}{20}-\dfrac{5}{20}\)
\(=\dfrac{44}{20}-\dfrac{5}{20}\)
\(=\dfrac{39}{20}\)
\(\left(\dfrac{1}{4}+\dfrac{1}{6}\right)\times\left(\dfrac{1}{2}-\dfrac{1}{4}\right)\)
\(=\dfrac{5}{12}\times\dfrac{1}{4}\)
\(=\dfrac{5}{48}\)
\(\dfrac{1}{10}+\dfrac{1}{5}-\dfrac{3}{4}\)
\(=\dfrac{2}{20}+\dfrac{4}{20}-\dfrac{15}{20}\)
\(=\dfrac{6}{20}-\dfrac{15}{20}\)
\(=-\dfrac{9}{20}\)
Ta có: \(B=\left(\dfrac{21}{x^2-9}-\dfrac{x-4}{3-x}-\dfrac{x-1}{3+x}\right):\left(1-\dfrac{1}{x+3}\right)\)
\(=\left(\dfrac{21}{\left(x-3\right)\left(x+3\right)}+\dfrac{\left(x-4\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{\left(x-1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\right):\left(\dfrac{x+3}{x+3}-\dfrac{1}{x+3}\right)\)
\(=\dfrac{21+x^2+3x-4x-12-\left(x^2-4x+3\right)}{\left(x+3\right)\left(x-3\right)}:\dfrac{x+3-1}{x+3}\)
\(=\dfrac{x^2-x+9-x^2+4x-3}{\left(x+3\right)\left(x-3\right)}:\dfrac{x+2}{x+3}\)
\(=\dfrac{3x+6}{\left(x+3\right)\left(x-3\right)}:\dfrac{x+2}{x+3}\)
\(=\dfrac{3\left(x+2\right)}{\left(x+3\right)\left(x-3\right)}\cdot\dfrac{x+3}{x+2}\)
\(=\dfrac{3}{x-3}\)