Tìm GTNN của biểu thức:
F=2x mũ 2 - 10x + 20
Mong mn giúp ạ
Bài 8 : Tìm GTNN của biểu thức:
F= ( x - 1 )2 + ( x - 3 )2
Bài 9 : Tìm GTLN của biểu thức:
A= 4 - x2 + 2x
B= 10x - 23 - x2
C= -x2 + 6x
a) Rút gọn A
b) Với giá trị x;y nguyên dương nào thỏa mãn x + 2y = 14 nhận giá trị nguyên dương.
Mn giúp mik nhé! mik ko làm đc mấy bài này.
Bài 8:
\(F=x^2-2x+1+x^2-6x+9=2x^2-8x+10\\ F=2\left(x^2-4x+4\right)+2=2\left(x-2\right)^2+2\ge2\\ F_{min}=2\Leftrightarrow x=2\)
Bài 9:
\(A=-x^2+2x-1+5=-\left(x-1\right)^2+5\le5\\ A_{max}=5\Leftrightarrow x=1\\ B=-x^2+10x-25+2=-\left(x-5\right)^2+2\le2\\ B_{max}=2\Leftrightarrow x=5\\ C=-x^2+6x-9+9=-\left(x-3\right)^2+9\le9\\ C_{max}=9\Leftrightarrow x=3\)
Tìm GTLN,GTNN của biểu thức sau:
a)-x^2+9x-12
b)2x^2+10x-1
c)(2x+6)(x-1)
d)3x-2x^2
mk đang cần gấp nên mn giúp mk nha.cảm ơn mn trước
a) Đặt \(A=-x^2+9x-12\)
\(-A=x^2-9x+12\)
\(-A=\left(x^2-9x+\frac{81}{4}\right)-\frac{33}{4}\)
\(-A=\left(x-\frac{9}{2}\right)^2-\frac{33}{4}\)
Mà \(\left(x-\frac{9}{2}\right)^2\ge0\forall x\)
\(\Rightarrow-A\ge-\frac{33}{4}\Leftrightarrow A\le\frac{33}{4}\)
Dấu "=" xảy ra khi : \(x-\frac{9}{2}=0\Leftrightarrow x=\frac{9}{2}\)
Vậy \(A_{Max}=\frac{33}{4}\Leftrightarrow x=\frac{9}{2}\)
b) Đặt \(B=2x^2+10x-1\)
\(B=2\left(x^2+5x+\frac{25}{4}\right)-\frac{29}{4}\)
\(B=2\left(x+\frac{5}{2}\right)^2-\frac{29}{4}\)
Mà \(\left(x+\frac{5}{2}\right)^2\ge0\forall x\Rightarrow2\left(x+\frac{5}{2}\right)^2\ge0\forall x\)
\(\Rightarrow B\ge-\frac{29}{4}\)
Dấu "=" xảy ra khi : \(x+\frac{5}{2}=0\Leftrightarrow x=-\frac{5}{2}\)
Vậy \(B_{Min}=-\frac{29}{4}\Leftrightarrow x=-\frac{5}{2}\)
c) Đặt \(C=\left(2x+6\right)\left(x-1\right)\)
\(C=2x^2-2x+6x-6\)
\(C=2x^2+4x-6\)
\(C=2\left(x^2+2x+1\right)-8\)
\(C=2\left(x+1\right)^2-8\)
Mà \(\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow C\ge-8\)
Dấu "=" xảy ra khi : \(x+1=0\Leftrightarrow x=-1\)
Vậy \(C_{Min}=-8\Leftrightarrow x=-1\)
d) Đặt \(D=3x-2x^2\)
\(-2D=4x^2-6x\)
\(-2D=\left(4x^2-6x+\frac{9}{4}\right)-\frac{9}{4}\)
\(-2D=\left(2x-\frac{3}{2}\right)^2-\frac{9}{4}\)
Mà \(\left(2x-\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow-2D\ge-\frac{9}{4}\)
\(\Leftrightarrow D\le\frac{9}{8}\)
Dấu "=" xảy ra khi : \(2x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{4}\)
Vậy \(D_{Max}=\frac{9}{8}\Leftrightarrow x=\frac{3}{4}\)
Tìm GTNN : A = 2x mũ 2 + 4y mũ 2 + 4xy + 10x + 12y + 18
\(A=2x^2+4y^2+4xy+10x+12y+18\)
\(A=x^2+4xy+4y^2+6x+12y+9+x^2+4x+4+5\)
\(A=\left(x+2y\right)^2+2.3\left(x+2y\right)+9+\left(x+2\right)^2+5\)
\(A=\left(x+2y+3\right)^2+\left(x+2\right)^2+5\)
Do : \(\hept{\begin{cases}\left(x+2y+3\right)^2\ge0\forall x\\\left(x+2\right)^2\ge0\forall x\end{cases}}\)
\(\Leftrightarrow\left(x+2y+3\right)^2+\left(x+2\right)^2+5\ge5\)
\("="\Leftrightarrow\hept{\begin{cases}x+2y+3=0\\x+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=-\frac{1}{2}\\x=-2\end{cases}}}\)
Vậy \(A_{min}=5\Leftrightarrow\hept{\begin{cases}x=-2\\y=-\frac{1}{2}\end{cases}}\)
Chúc bạn học tốt !!!
Tìm giá trị nhỏ nhất : A= / x + 5 / + 2023
B= ( x + 2 ) mũ 2 - 2023
C= x mũ 2 - 6x + 20
D= x mũ 2 + 10x - 25. mn Giúp em vs ạ
A = |\(x\) + 5| + 2023
|\(x\) + 5| ≥ 0 ⇒| \(x\) + 5| + 2023 ≥ 2023⇒ A(min) = 2023 xảy ra khi \(x\) = -5
B = (\(x+2\))2 - 2023
(\(x\) + 2)2 ≥ 0 ⇒ (\(x\) + 2)2 ≥ - 2023 ⇒ A(min) = -2023 xảy ra khi \(x\) = -2
C = \(x^2\) - 6\(x\) + 20
C = (\(x^2\) - 3\(x\)) - ( 3\(x\) - 9) + 11
C = \(x\)(\(x-3\)) - 3(\(x\) -3) + 11
C = (\(x-3\))(\(x\)-3) + 11
C = (\(x-3\))2 + 11
(\(x\) -3)2 ≥ 0 ⇒ (\(x\) - 3)2 + 11 ≥ 11 vậy C(min) = 11 xảy ra khi \(x=3\)
D = \(x^2\) + 10\(x\) - 25
D = \(x^2\) + 5\(x\) + 5\(x\) + 25 - 55
D = (\(x^2\) + 5\(x\)) + (5\(x\) + 25) - 50
D = \(x\)(\(x\) + 5) + 5(\(x\) + 5) - 50
D = (\(x\) +5)(\(x\) + 5) - 50
D = ( \(x\) + 5)2 - 50
(\(x+5\))2 ≥ 0 ⇒ (\(x\) + 5)2 - 50 ≥ -50 ⇒ D(min) = -50 xảy ra khi \(x\) = -5
Cho 2 số thực x,y thỏa mãn y = \(\dfrac{2x}{x-3}\), x>3. Tìm GTNN của biểu thức P = 3xy + 2x + y. Mn giúp e với ạ, em thử biến đổi nhưng ko dùng được Cauchy mn ạ. :< Em cảm ơn mm
\(y=2+\dfrac{6}{x-3}\)
\(P=3x\left(2+\dfrac{6}{x-3}\right)+2x+2+\dfrac{6}{x-3}\)
\(P=8x+2+\dfrac{18x}{x-3}+\dfrac{6}{x-3}=8x+20+\dfrac{60}{x-3}\)
\(P=8\left(x-3\right)+\dfrac{60}{x-3}+44\ge2\sqrt{\dfrac{480\left(x-3\right)}{x-3}}+44=44+8\sqrt{30}\)
\(P_{min}=44+8\sqrt{30}\) khi \(8\left(x-3\right)=\dfrac{60}{x-3}\Leftrightarrow x=\dfrac{6+\sqrt{30}}{2}\)
Tìm GTNN ( hoặc GTLN ) của biểu thức
A = x^2-4x+1
B = 2x^2-x+1
C = x^2-x+1
D = -x^2+x-3
E = -x^2+2x-2
F = -3x^2+x-2
mong mn giúp ạ
\(A=x^2-4x+1=\left(x^2-4x+4\right)-3=\left(x-2\right)^2-3\ge-3\)
Vậy \(A_{Min}=-3khix=2\)
m.n giúp vs ạ: tìm GTNN của biểu thức:
C = x2 - 4xy + 5y2 + 10x - 22y + 28
Tìm GTLN của các biểu thức sau P=-2x^2-12x Q=-5x^2+10x A=-3x^2+12-6 B=-2x^-24x+12
Mk đang cần gấp ạ . Cảm ơn mn
1) \(P=-2x^2-12x=-2\left(x^2+6x+9\right)+18=-2\left(x+3\right)^2+18\le18\)
\(maxP=18\Leftrightarrow x=-3\)
2) \(Q=-5x^2+10x=-5\left(x^2-2x+1\right)+5=-5\left(x-1\right)^2+5\le5\)
\(maxQ=5\Leftrightarrow x=1\)
3) \(A=-3x^2+12x-6=-3\left(x^2-4x+4\right)+6=-3\left(x-2\right)^2+6\le6\)
\(maxA=6\Leftrightarrow x=2\)
4) \(B=-2x^2-24x+12=-2\left(x^2+12x+36\right)+84=-2\left(x+6\right)^2+84\le84\)
\(maxB=84\Leftrightarrow x=-6\)
tìm x biết:(2x-3)mũ 2=9.Mn giúp mik với ạ!
\(\left(2x-3\right)^2=9\)
\(\left(2x-3\right)^2=3^2\)
⇒\(2x-3=+-3\)
\(TH1:2x-3=3\text{⇒}x=3\)
\(TH2:2x-3=-3\text{⇒}x=0\)
ta có: \(\left(2x-3\right)^2\)=\(3^2\)
2x-3=3
2x=3+3
2x=6
x=6:2
x=3
vậy x==3